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a b s t r a c t

We study the properties of a low-angular momentum, inviscid, advective accretion flow in a deformed
Kerr spacetime under the framework of general theory of relativity. We solve the governing equations
that describe the flow motion in terms of input parameters, namely energy (E), angular momentum (λ),
spin (ak) and deformation parameter (ε), respectively. We find that global transonic accretion solutions
continue to exist in non-Kerr spacetime. Depending on the input parameters, accretion flow is seen to
experience shock transition and we find that shocked induced accretion solutions are available for a
wide range of the parameter space in λ−E plane. We examine the modification of the shock parameter
space with ε, and find that as ε is increased, the effective region of the parameter space is reduced,
and gradually shifted towards the higher λ and lower E domain. In addition, for the first time in the
literature, we notice that accretion flow having zero angular momentum admits shock transition when
spacetime deformation is significantly large. Interestingly, beyond a critical limit of εmax, the nature of
the central object alters from black hole (BH) to naked singularity (NS) and we identify εmax as function
of ak. Further, we examine the accretion solutions and its properties around the naked singularity as
well. Finally, we indicate the implications of the present formalism in the context of astrophysical
applications.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Accretion of matter onto compact objects (namely, black holes
BHs) and neutron stars) is the most acceptable and prolific
hysical process in the context of energy generation in enig-
atic objects like active galactic nuclei (AGNs) and X-ray binaries

XRBs) etc. [1–4]. It has been noticed from observations that
hese objects undergo several spectral state transitions [5], and
hese spectral states are classified as ‘‘Low/Hard’’ state (LHS),
‘High/Soft’’ state (HSS), and ‘‘Intermediate’’ state (IMS), respec-
ively. In order to understand the aforementioned spectral states,
arious accretion disk models have been developed. The stan-
ard thin disk model, developed considering Keplerian flow, [6,7]
as successful to explain the HSS. To interpret the character-

stics of LHS and IMS, several other disk models, namely the
hick disk model [8–11], advective disk model [12–14], advection-
ominated disk model [15–19] and truncated disk models [20,21]
ere studied. Among them, some of the disk models are also
otentially viable to comprehend the origin of the relativistic jets
nd quasi-periodic oscillation (QPOs) phenomena as well. Need-
ess to mention that the underlying scenario of these theories are
anded into the fundamental aspects of the general relativity (GR).
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Since the hosted central object directly impacts on the properties
of the accretion disk, such theory can successfully probe the
signatures of strong gravity (e.g., event horizon, ergosphere, ISCO
and shadow etc.), and eventually, one can ascertain the physical
parameters (i.e., mass and spin) of the central source.

Meanwhile, high precision observational measurements of the
electromagnetic spectrum reveals some unusual features from
the known Kerr signals [22–24]. Such discriminant is also ob-
served in the gravitational waves spectrum from the BHs or
neutron stars binary system [25,26]. In these circumstances, sev-
eral research groups have reported the parametric deviations
to the Schwarzschild and Kerr black holes [27–30]. According
to the no-hair theorem, such deviation to the original metrics
brings alternative gravity theory (i.e., the metrics are no longer
the Einstein gravity solutions). Thus, we may anticipate that
the non-Kerr spacetime can affect various strong gravity sig-
natures and illustrate the peculiarities in the observations. In
the last decade, one of the emerging and smeared alternative
gravity is the Johannsen–Psaltis (JP) metric [27]. They first include
a deformation function, which contains infinite terms, in the
Schwarzschild metric and then apply the Newman–Jenis algo-
rithm to convert into a rotational Kerr-like metric. After that,
deformation terms are restricted through the observational lim-
itations on the weak-field modification of GR and asymptotic
flatness. The finally obtained metric is characterized by the mass,
spin and only one deviation parameter. When the deviation pa-
rameter is zero, it is reduced to the original Kerr metric. Their
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nalysis also inflicts one valuable outcome in the calculation of
he ISCO and circular photon orbits, and their dependency on
he spin and deviation parameters under this proposed back-
round. They show that, depending on the spin parameter, the
entral singularity of the spacetime becomes naked for outside
bservers when the deviation parameter crosses some limiting
alue. Usually, these irregularities in spacetime are described by
he negative precession of the closed timelike orbits, which are
he observational signature of the naked singular exotic objects.

Meanwhile, various investigations have been performed on
he JP metric. For example, Bambi [31] found the restriction
o the spin parameter for non-Kerr BHs through the observa-
ional inconsistency in the radiative efficiency for luminous AGNs.
n Bambi et al. [32], the spacial topology of the event horizon
or non-Kerr spacetime has been investigated. The properties
f the ergosphere and the energy extraction by the Penrose
rocess in a rotating deformed BH are carried out in Liu et al.
33]. Chen and Jing [34] analyzed the strong gravitational lensing
ffect in a background of non-Kerr compact objects. Krawczyn-
ki [35] distinguished between the original Kerr BHs hypothesis
nd non-Kerr BHs, and tested the no-hair theorem through the
pectro-polarimetric observational data of the black hole XRBs.
detailed investigation of shadows and restriction to the space-

ime parameters have been presented through the observation
f polarization angles in Atamurotov et al. [36]. The inclusion
f new parametric deviation approach and its challenge to the
P metric are encountered in Rezzolla and Zhidenko [28]. A re-
iew on the signatures of alternative gravity by employing the
ravitational waves from the BHs merging is presented in Yagi
nd Stein [37]. A general ray-tracing formalism for black hole
hadow calculations and its application to several deformed black
oles have been reported in Younsi et al. [38]. The simultaneous
xistence of closed timelike orbits with negative precession and
hadows is reported for the non-Kerr naked singular spacetime
n Bambhaniya et al. [39]. Very recently, the properties of the
ccretion disk around a non-Kerr black hole without reflection
ymmetry have been revealed in Chen and Yang [40]. All these
orks evidently indicate that the JP metric attracts huge focus
n it and also gets tremendous success for different applications
n gravity. However, to the best of our knowledge, no one has
onveyed the hydrodynamics of the accreting matter in the back-
round of JP compact objects. Such deficiency in the literature
ushes us to serve the present work, where we explore, for the
ery first time, the accretion dynamics of fluids in a spacetime of
lternative gravity. We expect this analysis will lead to a better
nderstanding of the non-Kerr spacetime in the light of accretion
ynamics.
In this work, we solve the general relativistic Euler’s equation

n the JP spacetime by utilizing the standard definitions of three
elocities [41] in a co-rotating frame. Even in the strong-field
egime, flow equations mimics the Newtonian-like equations and
rovide the effective potential corresponding to the gravitating
bject [42]. We derive the radial velocity gradient and temper-
ture gradient equations using the relativistic equation of state
REoS) that endure variable adiabatic index (Γ ). After develop-
ng the mathematical framework, our primary motivation is to
xpress the influence of the deformed term on the flow prop-
rties. We start our analysis accommodating the effect of the
eformation parameter (ε) on the nature of critical points and

the global transonic solutions around BH. Next, we separate the
parameter space (in angular momentum (λ) - energy (E) plane)
by means of the nature of the solution topologies and show
their modifications with the input parameters. The global shock
solutions, including their inherent properties, have been stud-
ied in detail. An important result is presented where we depict

that even zero angular momentum flow can possesses multiple

2

critical points and consequently suffer the shock transitions. This
eventually provides new signatures of accretion dynamics in the
non-Kerr BH spacetime. We show that for a given spin parameter
(ak), the usual BH accretion solutions continue to present up to
a maximum value of the deformation parameter (εmax). When
ε > εmax, the nature of the solution changes due to the presence
of an extra critical point very close to the compact object. This
possibly happens as the central source seems to appear as naked
singularity [43] which is examined using numerical as well as
analytical means. We further calculate a parameter space spanned
by the spin (ak) and the deformation parameter (ε) according
to the solution topologies around either BH or naked singularity
state of the central objects. A comparison of εmax obtained in the
pseudo-Newtonian model and analytical approach is presented
where good agreement is seen. This evidently indicates that the
accretion dynamics provides an alternative window to distinguish
the subtle nature of the compact objects.

Finally, we wish to emphasis that the global transonic accre-
tion solutions in the deformed Kerr spacetime continue to exist
as in the case of original Kerr spacetime. From our analysis, two
new findings are imparted. One of them is the multiple critical
point solutions including shock transitions. Another one is the
existence of naked singularity for non-Kerr spacetime even if the
spin parameter ak < 1. In the alternative gravity theory of GR,
these specific findings can be considered observational evidence
to distinguish the deformed Kerr spacetime from the original Kerr
spacetime.

This paper is arranged as follows. In Section 2, we develop
the mathematical framework of the accretion disk theory and
set up the critical point conditions. In Section 3, we present the
effect of ε on the critical point analysis, global flow solutions
and modification of the parameter space for the non-Kerr BH.
Section 4 analyzes the shock-induced global accretion solutions
and their parameter spaces. The dependence of shock properties
on ε is also established in this section. In Section 4.3, we show the
flow solutions associated with zero angular momentum flows. In
Section 5, we depict how ε incorporates the naked singularity in
the system through critical point analysis and their corresponding
transonic solutions. In Section 5.3, we represent the properties of
the spacetime parameters in the JP metric. Finally, in Section 6,
we present conclusions.

2. Assumptions and governing equations

We present the basic equations governing the accretion flow
using general relativistic hydrodynamics. To avoid mathematical
complexity, the accretion disk is assumed to remain confine
around the equatorial plane of the central object. We further con-
sider the flow to be steady, inviscid and advective, where energy
dissipations due to viscosity, thermal conduction, magnetic fields
and radiative cooling are neglected.

2.1. Governing equations

In the standard Boyer–Lindquist coordinates (t, r, θ, φ), the
deformed Kerr metric (known as JP metric) is expressed as [27],

ds2 = −(1 −
2MBHr

Σ
) [1 + h(r, θ )] dt2

−
4MBHrak sin2 θ

Σ
[1 + h(r, θ )] dtdφ

+
Σ [1 + h(r, θ )]

∆ + a2kh(r, θ ) sin
2 θ

dr2 + Σdθ2

+

[
Σ + a2k [1 + h(r, θ )] (1 +

2MBHr ) sin2 θ

]
sin2 θdφ2,

(1)
Σ
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here Σ = r2 + a2k cos
2 θ and ∆ = r2 − 2MBHr + a2k . Here,

(r, θ ) (= εM3
BHr/Σ

2) denotes the deformation that accounts the
eviation of the metric under consideration from the original Kerr
etric. And, ak and MBH are the spin parameter and the mass
f the central object, respectively while ε refers the deformation
arameter. In ε → 0 limit, Eq. (1) leads to the original Kerr metric.
n this work, we use geometric units: G = MBH = c = 1, where
and c are the gravitational constant and the velocity of light,

espectively.
In Introduction, we elaborately mention that the proposed

orm of the metric is inspired by various observational evidences.
n particular, the suggested metric (Eq. (1)) is put forward by
onsidering the deviation of the usual Kerr solution, and the
eformation parameter, measure of the spacetime deformation, is
hen constrained by the observational data (see e.g. [27]). Because
f this, the metric is not a solution of the vacuum Einstein’s
quations of motion. Under such circumstances, one is usually
nterested in searching for the gravity dynamics that predict
uch a solution. Accordingly, the present approach attempts to
elate the notion of the alternate theory of gravity that differs
rom the Einstein’s theory. Needless to mention that no such
oncrete theory of gravity has been investigated so far. Since the
dopted spacetime introduces the deviations from the usual Kerr
olution, and it has the potential to explain recent observational
henomena, there are growing interests to examine its influence
n understanding the various astrophysical phenomena including
ts own physical properties. The accretion process around black
ole is one of such phenomenon that is yet to be investigated for
he black holes considering the above mentioned spacetime. Since
he deformed Kerr metric offers novel features, the accretion
ynamics are expected to be influenced, and hence, in the present
ork, we intend to investigate the properties of the accretion

low in the deformed spacetime of the rotating black hole.
In the general relativistic hydrodynamics, the mass conser-

ation equation [∇k(ρuk) = 0] and energy–momentum conser-
ation equation [∇iT ik

= 0] take the generalized form of the
ontinuity and Euler’s equations [42–46], and are given by,

k
[
(e + p)uk]

= uk
∇kp (2)

nd

e + p)uk
∇kui + ∇ip + uiuk

∇kp = 0. (3)

ere e, p and uk are the total internal energy, pressure, and
our-velocity of the perfect fluid, respectively, and the spacetime
ndices (i, k) bear values from 0 to 3.

We consider the fluid to obey the same symmetries of the
pacetime, and apply the condition ξµ

∇µQ = 0, where Q
efers any fluid parameters (e.g ., mass density, pressure and
our-velocity, etc.) and ξµ is a generic Killing vector associated
ith the spacetime. Therefore, using Eqs. (2) and (3), we get the
onservation equation as [42,43,47–49],
ν
∇ν(huµξµ) = 0. (4)

The stationary and axisymmetric spacetime, due to its symme-
ries, is associated with two Killing vectors: ηi

= δit and ζ i
= δiφ .

he corresponding conserved quantities are given by,

− hut = E and huφ = L, (5)

here h = (e + p)/ρ is the specific enthalpy and ρ is the mass
ensity of the fluid. Here, E is the Bernoulli function and L is the
ulk angular momentum per unit mass of the fluid. The specific
ngular momentum is defined as λ = L/E = −uφ/ut that
emains conserved along the streamlines of the flow (see Eq. (5)).

Following Lu [41], we adopt the components of three ve-
ocity in a co-rotating frame. The azimuthal, polar and radial
3

omponent of three-velocity are defined as v2
φ = uφuφ/(−utut ),

2
θ = γ 2

φ (u
θuθ )/(−utut ) and v2

= γ 2
φ γ 2

θ v2
r , respectively, where

v2
r = urur/(−utut ). The respective bulk Lorentz-factors (γφ , γθ

and γv) are expressed as γ 2
φ = 1/(1 − v2

φ), γ
2
θ = 1/(1 − v2

θ ) and
γ 2

v = 1/(1−v2). We further consider the fluid motions around the
disk equatorial plane (θ = π/2) with vθ = 0 and γθ = 1. Under
these assumptions, the angular velocity of the fluid is obtained
as [16],

Ω =
uφ

ut =
[λ(r − 2) + 2ak] (1 + h)

a2k(1 + h)(r + 2) − 2akλ(1 + h) + r3
, (6)

where h = h(r, θ = π/2) = ε/r3. The normalization uiui = −1
yields the covariant time-component of four-velocity and is given
by [43,46],

ut = γv

×

√
(∆ + a2kh)(1 + h)r

a2k(r + 2)(1 + h) − 4akλ(1 + h) + r3 − λ2(r − 2)(1 + h)
.

(7)

The above relation is explicitly written for our metric (1). Since
the motion is considered around the disk equatorial plane, and
there are time translation as well as azimuthal symmetries, the
Eqs. (2) and (3) for i = r are simplified as [42,43],

e + p
ρ

dρ
dr

−
de
dr

= 0 (8)

and

γ 2
v v

dv
dr

+
1
hρ

dp
dr

+
dΦeff

dr
= 0. (9)

For the same reason, i = θ component of Eq. (3) is trivially satis-
fied and therefore does not lead to any new equation. However,
the equations for both i = t and φ govern the conservation of
specific angular momentum [42], which we already encountered
through the Killing symmetries in the metric. Following [14,42,
and references therein], we identify Φeff in Eq. (9) as the effective
pseudo-potential and is given by,

Φeff
= 1 + 0.5ln(Φ) . (10)

or the metric given in Eq. (1), Φ is given by

=
(∆ + a2kh)(1 + h)r

a2k(r + 2)(1 + h) − 4akλ(1 + h) + r3 − λ2(r − 2)(1 + h)
.

(11)

Integrating the mass conservation equation, we obtain the
lobally conserved mass accretion rate (Ṁ) which is given by [42,
5],

˙ = −4πρvγvH
√
(∆ + a2kh)(1 + h), (12)

where H is the local half thickness of the disk. Following the work
of Chattopadhyay and Ryu [50], we adopt the relativistic equation
of state (REoS) and pressure (p) as,

e =
ρf
τ

and p =
2ρΘ

τ
, (13)

here τ = 2 − ξ (1 − 1/χ ), the composition ratio ξ = np/ne
and the mass ratio χ = me/mp. The number density and the
mass of the ith species (electron, proton) are denoted by ni ∈

{ne, np} and mi ∈ {me,mp}, respectively. Moreover, we consider
ξ = 1, throughout our analysis. Here the quantity f is obtained
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∆′
=

d∆
dr

= 2(r − 1); Ω ′
=

dΩ
dr

= − 2(1 + h)

[
a3k(1 + h) − 2a2kλ(1 + h) + ak[λ2(1 + h) + 3r2] + r2λ(r − 3)[

a2k(r + 2)(1 + h) − 2akλ(1 + h) + r3
]2

]

−
3ε [λ(r − 2) + 2ak]

r
[
a2k(r + 2)(1 + h) − 2akλ(1 + h) + r3

]2 .

(23)

Box I.
a

N

2

m
o
r
t
a
t
e
s
A
f
p
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v

w

n terms of dimensionless temperature (Θ = kBT/mec2, kB is the
oltzmann constant and T is the flow temperature in Kelvin) as

f = (2 − ξ )
[
1 + Θ

(
9Θ + 3
3Θ + 2

)]
+ ξ

[
1
χ

+ Θ

(
9Θ + 3/χ
3Θ + 2/χ

)]
.

(14)

or REoS, polytropic index (N), adiabatic index (Γ ) and sound
peed (Cs) are defined as

=
1
2

df
dΘ

; Γ = 1 +
1
N

; and C2
s =

Γ p
e + p

=
2Γ Θ

f + 2Θ
. (15)

Considering the hydrodynamic equilibrium in the vertical di-
rection, the local half thickness of the disk (H) is calculated
as [51–53],

H =

√
pr3

ρF
=

√
2r3Θ
τF

, (16)

here

= γ 2
φ

(r2 + a2k)
2
+ 2∆a2k

(r2 + a2k)2 − 2∆a2k
. (17)

ntegrating Eq. (8) and using Eq. (13), the mass density is obtained
s [43,54,55],

= K exp (k3)Θ3/2(3Θ + 2)k1 (3Θ + 2/χ )k2 , (18)

here k1 = 3(2−ξ )/4, k2 = 3ξ/4, k3 = (f −τ )/(2Θ), and K refers
the entropy constant. Using Eqs. (12) and (18), we compute the
entropy accretion rate as [45,56],

Ṁ =
Ṁ

4πK
= vγvH

√
(∆ + a2kh)(1 + h)

× exp (k3)Θ3/2(3Θ + 2)k1 (3Θ + 2/χ )k2 .
(19)

onsidering logarithmic derivative of Eq. (12) and setting the
ondition of constant mass accretion rate (i.e., dṀ/dr = 0), the
emperature gradient is expressed as,

dΘ
dr

= −
2Θ

2N + 1

×

[
γ 2

v

v

dv
dr

+ N11 + N12 −
3ε
2r4

(
a2k

∆ + a2kh
+

1
1 + h

)]
,

(20)

here

11 =
5
2r

+
r − a2k(1 + h)
r(∆ + a2kh)

and N12 = −
1
2F

dF
dr

. (21)

he explicit form of the quantity 1
F

dF
dr is obtained by taking the

logarithmic derivative of Eq. (17) and is given by,

1
F
dF
dr

= γ 2
φ λΩ ′

+ 4a2k(r
2
+ a2k)

[
(r2 + a2k)∆

′
− 4∆r

(r2 + a2k)4 − 4∆2a4k

]
, (22)

here Eq. (23) is given in Box I.
4

Finally, we capitalize Eq. (15) and obtain the radial velocity
gradient from Eq. (9) as,
dv
dr

=
N
D

, (24)

where the explicit form of the denominator D and that of the
numerator N are represented by,

D = γ 2
v

[
v −

2C2
s

(Γ + 1)v

]
(25)

nd

=
2C2

s

Γ + 1

×

[
N11 + N12 −

3ε
2r4

(
a2k

∆ + a2kh
+

1
1 + h

)]
−

dΦeff

dr
.

(26)

.2. Critical point conditions

In an accretion process around a gravitating object, infalling
atter starts accreting with negligible radial velocity from the
uter edge of the disk (usually far away from the horizon) and
emain sub-sonic. On the other hand, accretion flow enters into
he black hole super-sonically in order to satisfy the inner bound-
ry conditions imposed by the event horizon. Since the motion of
he flow generally remains smooth everywhere, accreting matter
xperiences sonic state transition at some point to become tran-
onic [57,58] and such a point is referred as critical point (rc).
t rc , the radial velocity gradient takes (dv/dr)rc = 0/0 (Eq. (24))
orm as it must be real and finite, and hence, we obtain the critical
oint conditions by setting D = N = 0 simultaneously which are
iven by,

2
c =

2C2
sc

(Γc + 1)
(27)

and

C2
sc =

Γc + 1
2

(
dΦeff

dr

)
c
×[

(N11)c + (N12)c −
3ε
2r4c

(
a2k

∆c + a2khc
+

1
1 + hc

)]−1

,

(28)

where the subscript ‘‘c’’ refers quantities measured at the critical
point. We evaluate (dv/dr)rc by applying l′Hôpital’s rule which is
obtained as

dv
dr

⏐⏐⏐⏐
c
=

−B ±
√
B2 − 4AC
2A

, (29)

here the resulted form of quantities A, B and C are presented
in Appendix. In general, critical points are classified in three
different categories. For saddle type critical points, both values
of (dv/dr)rc are real with opposite sign. For nodal type critical
points, both values of (dv/dr)rc are real and same sign, whereas
for O-type critical point, (dv/dr)rc becomes imaginary. It is note-
worthy that any physically acceptable accretion solution only
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Fig. 1. Plot of specific energy (E) as the function of critical point locations (rc )
or (a) different angular momentums λ = 2.5 (black), 2.7 (blue), 2.9 (red) and
.1 (green) with deformation parameter ε = 3, and (b) different deformation
arameters ε = 0 (black), 3 (blue), 6 (red) and 9 (green) with the specific angular
omentum λ = 2.8. Solid, dotted and dashed curves denote saddle, nodal and
-type critical points, respectively. The dot-dashed horizontal line indicates the
pecific energy E = 1. In each panel, we zoom a part of the plots for the purpose
f clarity. See text for details. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

asses through the saddle type critical point [59,60, and refer-
nces therein], and hence, in this work, we focus only those
ccretion solutions that possess saddle type critical point (here-
fter critical point). We further mention that accretion flow may
ontain multiple critical points depending of the flow parameters
nd flow of this kind are potentially favorable to contain shock
ave (see Section 4).

. Hydrodynamics with deformation

In this section, we explore the role of the deformation param-
ter (ε) in deciding the nature of the critical points as well as
he accretion solutions in deformed Kerr spacetime. While doing
his, we identify the range of parameters that allows accretion
olutions around black holes. We also put efforts in examining the
ature of the accretion solutions beyond black hole environment
s well.

.1. Critical points analysis

As the accretion solutions embrace the critical points, we start
ur analysis by understanding the nature of critical points. For
hat we calculate the specific energy (E) at a critical point (rc)
y solving Eqs. (5), (27) and (28) using the global parameters,
amely λ, ε and ak, respectively. In Fig. 1, the variation of E as
function of rc is presented for different λ with ε = 3 (see panel
a)) and for different ε with λ = 2.8 (see panel (b)). Presently,
e choose the Kerr parameter a = 0. However, we mention that
k

5

here are no qualitative differences between the characteristics
f critical points for the non-spinning and spinning black holes.
ence, in this work, most of the analyses have been carried out
onsidering ak = 0, although there are instances where results
or ak ̸= 0 are presented according to the necessity. In the
igure, different λ and ε values are marked in the respective
panels. We use black, blue, red and green curves for λ = 2.5,
2.7, 2.9 and 3.1 respectively. The same color sequence is used
to represent results for ε = 0, 3, 6, and 9, respectively. In each
panel, a given curve is generally comprised with saddle, nodal
and O-type critical points and they are demonstrated by the solid,
dotted and dashed curves respectively. Moreover, these critical
points appear in sequence as saddle–nodal–spiral–nodal–saddle
as rc is increased. In addition, we observe that all curves have an
asymptotic behavior towards E ≃ 1 (dot-dashed horizontal line)
for larger values of rc irrespective of λ and ε values. Depending
on E, λ and ε, flow may contain either single or multiple critical
points. Usually, critical points formed near and far away from the
horizon are called as inner (rin) and outer critical points (rout),
respectively. It is evident from the figure that there exists a range
of E that yields multiple critical points and such energy range is
strictly depends on λ and ε values. Following this, in Section 3.3,
we put effort to identify the effective region of the parameter
space based on the nature of the accretion solutions. Overall, it
is now evident that ε, λ and E play pivotal role in determining
the nature of the critical points and its associated properties.

3.2. Effect of ε on the global accretion solutions

Here, we examine the impact of ε on the accretion solutions.
While doing so, we calculate the location of the critical point
(rc), and the corresponding radial velocity (vc) and dimensionless
temperature (Θc) at rc by simultaneously solving Eqs. (5), (15),
(27) and (28) for a given set of input parameters (λ, E, ak and ε).
We employ Θc and vc as the initial values at rc to simultaneously
solve Eqs. (20) and (24) once inward up to the horizon (rH) and
then outward up to the outer edge of the disk (redge). Finally,
we join this two parts of the solution to obtain the complete
radial profiles of velocity (v) and temperature (Θ). In Fig. 2, we
depict the accretion solutions (M vs. r) for different ε, where
E = 1.001, λ = 2.8 and ak = 0 are chosen. In panels (a–d), the
ariation of Mach number (M) as function of radial distances (r)

is presented for ε = 0, 3, 6 and 9, respectively. Here, the solid
curve represents the accretion solution whereas dashed curve
denotes the corresponding wind solution. In the figure, filled
circles refer the critical points, where inner (rin) and outer (rout)
critical points are marked. We observe that for ε = 0, the flow
passes through the outer critical point at rout = 198.6333 and
connects the outer edge of the accretion disc (redge = 1000) to
he black hole horizon (rH) (see panel (a)). Solutions of this kinds
re often called by some authors as heteroclinic solutions [61,
2]. As the deformation parameter is increased (say ε = 3)
eeping other input parameters unchanged, inner critical point
s appeared at rin = 5.7136 along with the outer critical point at
out = 198.5498. Interestingly, the solution passing through the
uter critical point continues to connect rH and redge, however
he inner critical point solutions fail to do so as it terminates
t a radius rt = 20.3336 in between inner and outer critical
oints as rin < rt < rout as shown in panel (b). The closed
ransonic solutions that unable to connect redge and rH are also
alled as homoclinic solutions [47,61]. For ε = 6, the nature of the
low solution remains qualitatively similar to panel (b) although
t = 77.7947 is increased (see panel (c)). We wish to emphasize
hat solutions presented in panel (b–c) may experience shock
ransition and we plan to discuss it elaborately in Section 4. With
he further increase of deformation parameter ε = 9, the solution
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Fig. 2. Top panels: Plot of Mach number M (= v/Cs) as a function of radial distance r . Solid and dashed curves denote the accretion solution and wind solution,
espectively. Filled circles denote the critical points. In this figure, we choose ak = 0, λ = 2.8 and E = 1.001. Results in panels (a), (b), (c) and (d) are obtained for
= 0, 3, 6 and 9, respectively. Bottom panels: Plot of the magnitude of four-acceleration (ap) with r corresponding to the global accretion solution (solid) presented

n the top panel. See text for details.
haracteristics are changed completely as shown in panel (d). We
ind that the solution passing through rin = 3.4628 smoothly
connects redge to rH, but the possesses rout = 198.3757 fails to do
so. Hence, it is evident that ε plays a decisive role in determining
the nature of the accretion solutions around the central object
under consideration. In Fig. 2e–h, we present the variation of
the magnitude of proper four-acceleration ap (=

√
aiai, where

four-acceleration ai = uk
∇kui [48]) with r corresponding to the

global transonic solutions depicted in panels (a), (b) (c) and (d),
respectively. In each panel, we notice that ap increases as flow
accretes towards the horizon and diverges at rH as v → 1. The
divergent nature of ap at the horizon is quite consistent with the
theoretical prediction; e.g. see discussion in Section 6.3 of [63].
This evidently indicates that, with respect to any observer at
static infinity, instead of timelike fluid only photons can stay at
r = rH. In a way, this defines a boundary region of the spacetime
(usually called static limit) of the black hole, where gtt(rH) = 0.

3.3. Parameter space based on nature of accretion solutions

In this section, we separate the effective region of the pa-
rameter space in λ − E plane according to the nature of the
accretion solutions. The obtained results are plotted in Fig. 3,
where parameter space is divided in to four regions marked as
O, A, W and I. Examples of different solution topologies obtained
using flow parameters (λ, E) from these regions are depicted at
the insets where Mach number (M = v/Cs) is plotted with the
radial distances (r). Here, we choose ak = 0 and ε = 5. In each
panel, the accretion and wind solutions are presented using solid
(black) and dashed (red) curves and the filled circle denotes the
critical point. Inside the bounded region of the parameter space,
flow solutions are found to possess multiple critical points which
is further sub-divided based on the entropy accretion rate (Ṁ)
measured at the critical points. Accordingly, region A and B are
obtained for Ṁ(rin) > Ṁ(rout) and Ṁ(rin) < Ṁ(rout), respec-
tively. For flow solutions presented in panel O, we choose (λ, E)
= (2.5, 1.001) and get only outer critical points at rout = 203.562.
We set (λ, E) = (2.80, 1.001) to obtain the flow solutions in panel
A, where r = 4.5132 and r = 198.4749. Similarly, for panel
in out

6

Fig. 3. Division of parameter space in λ−E plane according to the nature of the
flow solutions. Here, we fix ε = 5. Four regions are identified which are marked
as O, A, W and I. Examples of representative flow solutions from individual
regions are shown in each panel. See text for details.

W, we fix (λ, E) = (3.0, 1.007) and find rin = 4.0795 and rout =

194.5943. Finally, in panel I, we choose (λ, E) = (3.0, 1.0045) that
yields only inner critical point at rin = 4.0445. Note that all the
above findings are in general qualitatively similar to the results
obtained for pure Kerr black hole [42], but differs quantitatively
due to the deformation present in the adopted spacetime. The
nature of the accretion flows obtained from the different regions
in Fig. 3 is summarized in Table 1.

Next, we examine the modification of the parameter space
for multiple critical points in λ − E plane for different ε. We
present the obtained results in Fig. 4, where a = 0 is used,
k
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Table 1
The nature of the accretion solutions presented in Fig. 3.
Type Nature of accretion solutions

O Open solution containing rout
A Closed solution containing rin and

open solution containing rout
W Open solution containing rin and

closed solution containing rout
I Open solution containing rin

Fig. 4. Modification of the parameter space (in λ−E plane) for multiple critical
points due to the increase of the deformation parameter (ε). Regions bounded
with solid (black), dashed (red), dotted (blue) and dot-dashed (green) curves are
for ε = 0, 5, 10 and 15.2, respectively. In each parameter space, middle curve
efers Ṁ(rin) = Ṁ(rout). See text for details.

and the regions bounded by solid (black), dashed (red), dotted
(blue) and dot-dashed (green) are for ε = 0, 5, 10 and 15.2,
respectively. Each parameter space is further sub-divided based
on the entropy accretion rate at the critical points, where middle
curve denotes Ṁ(rin) = Ṁ(rout). We observe that the effective
domain of the parameter space is increased and also shifted
towards lower angular momentum and higher energy sides as ε is
ncreased. Further, for the first time to the best of our knowledge,
e report that for ε = 15.2, multiple critical points continue to
xist even for zero angular momentum flow. Indeed, the choice
f ε = 15.2 is not arbitrary, in fact, it is the lower limit of
he deformation parameter that provides multiple critical points
or λ = 0. Needless to mention that such a lower limit is not
niversal, instead it depends on the spin parameter (ak).
Fig. 5 shows the alteration of the parameter space for multiple

ritical points for different Kerr parameters (ak). Here, we choose
= 0.02. The region bounded using solid (black), dashed (red)

nd dotted (blue) curves correspond to the result for ak = 0, 0.5
and 0.99 respectively. In each parameter space, middle curve
refers Ṁ(rin) = Ṁ(rout). It is evident from the figure that pa-
rameter space is moved to the lower angular momentum and
higher energy domains with the increase of the black hole spin.
With this, we indicate that the effect of ak and ε in regulating
the parameter space for multiple critical points appears to be
analogous in nature.
7

Fig. 5. Modification of the parameter space for multiple critical points for
different Kerr parameter (ak). The area within solid (black), dashed (red) and
dotted (blue) boundaries are for ak = 0, 0.5 and 0.99, where ε = 0.02 is chosen.
n each parameter space, middle curve refers Ṁ(rin) = Ṁ(rout). See text for
etails.

. Accretion solutions with shock transitions

In this section, we focus on only to those accretion solutions
hat may contain shocks. In an accretion process, flow starts
ccreting towards black hole subsonically from the outer edge
f the disk. Depending on the input parameters, flow becomes
upersonic after crossing the outer critical point (rout) and contin-
es to accrete towards the horizon. Meanwhile, flow experiences
irtual barrier due to the centrifugal repulsion that eventually
riggers the discontinuous transition of the flow variables, when
elativistic shock conditions are satisfied [13,14,42,45,46,56,60,
4–68]. Generally, the shocked-accretion solution is preferred
ver the shock-free solutions as the entropy associated to the
ormer solution remain always higher at the inner part of the
isk [69]. In order to calculate the location of the shock transition,
e use the relativistic shock conditions which are given by [70],[
ρur]

= 0;
[
(e + p)utur]

= 0;[
(e + p)urur

+ pg rr]
= 0.

(30)

n Eq. (30), the quantities within the square bracket refer the
ifference of their values across the shock front.
In Fig. 6, we present an example of a global accretion solutions

omprising shock, where Mach number (M) is plotted with the
adial distances (r). Here, we choose flow parameters as (λ, E) =

3, 1.0005), and black hole parameters as (ak, ε) = (0, 3). In
he figure, the accretion solution is plotted using solid curve. In
eality, accretion flow can smoothly enters into the black hole
fter crossing rout = 339.7504 as indicated by the dotted (black)
urve. However, flow finds a possibility of shock transition at
sh = 50.1706 and it jumps from supersonic to subsonic branch
hich is shown using vertical arrow. After the shock, flow again
ecome supersonic after crossing rin = 4.7916 before falling
nto the black hole. Overall, arrows indicate the direction of flow
otion towards the horizon from the outer edge of the disk.

.1. Shock properties

Fig. 7 shows the dynamical structure of the shocked accretion
low resulted due to the variation of spacetime deformation (ε).
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Fig. 6. Example of a shock induced global accretion solution around black hole
here the variation of Mach number (M) with the radial coordinate (r) is shown.
he solution is obtained for ak = 0, ε = 3, λ = 3.0 and E = 1.0005. Vertical

arrow indicates the location of the shock transition at rsh = 50.1706. Arrows
denote the overall flow motion towards the black hole. See text for details.

Fig. 7. Variation of Mach number (M) with the radial coordinates (r) for
ifferent deformation parameters (ε). Here, we choose ak = 0, λ = 3 and
= 1.0013. Vertical arrows indicate the radius of the shock transition at

sh = 22.5278, 36.1334, 61.0066 and 86.8639 corresponding to ε = 0, 1, 2 and
.5, respectively. Critical points (rin and rout) are annotated by the filled circles.
ee text for details.

e consider accretion flow with energy E = 1.0013 and angular
omentum λ = 3.0 that are injected from the outer edge of

he disk at redge = 300 towards the black hole of spin ak =

. Here, we choose mass accretion rate Ṁ = 0.1ṀEdd with
BH = 10M⊙, where ṀEdd (= 1.39 × 1018 MBH

M⊙
gm s−1) refers

he Eddington accretion rate (the point is to note that we take
nergy conversion efficiency η = 0.1 in Ṁ ) and M denotes
Edd ⊙

8

Fig. 8. Variation of (a) radial velocity (v), (b) density (ρ), (c) temperature (T ),
d) vertical scale-height (H/r), (e) adiabatic index (Γ ) and (f) entropy accretion
ate (Ṁ) as a function of radial coordinates (r) in a spacetime with different
eformation parameters (ε). Each solid (black), dashed (red), dotted (blue) and
ot-dashed (green) curves are used for ε = 0, 1, 2 and 2.5, respectively. Here,
e choose (λ, E) = (3, 1.0013), and ak = 0. In each panel, shock locations are

ndicated by the vertical lines at rsh = 22.5278, 36.1334, 61.0066 and 86.8639,
espectively. Critical points (rin and rout) are marked by the filled circles. See text
or details. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

he solar mass. For ε = 0, flow encounters shock transition at
sh = 22.5278 and the solution is depicted using solid (black)
urve. We now increase the spacetime deformation keeping other
nput parameters fixed, and observe that shock radius gradually
ecedes away from the black hole horizon. For ε = 1, 2, and 2.5,
e obtain rsh = 36.1334, 61.0066 and 86.8639, respectively and
hese solutions are shown using dashed (red), dotted (blue) and
ot-dashed (green) curves. Needless to mention that indefinite
ncrease of ε is not possible because of the fact that beyond
critical limit, shock ceases to exist as the shock conditions

Eq. (30)) fail to satisfy.
In Fig. 8, we present the profile of various flow variables

orresponding to the shock-induced global accretion solutions
llustrated in Fig. 7. In Fig. 8a, radial velocity (v) profile is plotted
s function of radial coordinates (r) where discontinuous jump
f v is clearly seen. Solid (black), dashed (red), dotted (blue)
nd dot-dashed (green) curves denote the results obtained for

= 0, 1, 2, and 2.5, respectively. It is noteworthy that the
ifference of flow velocity across the shock front decreases with
and beyond a critical limit of ε, smooth transonic accretion

olutions containing rout only remains as shock disappears. We
iscuss the critical limit of ε in the subsequent sections while
tudying the shock properties. In Fig. 8b, we show the variation of
ensity (ρ) with r . Across the shock front, since the flow velocity
rops down, the density of the post-shock flow (hereafter PSC)
umps to higher value. This happens simply due to preserve the
onservation of mass flux across the shock front. Indeed, the
ensity compression decreases as ε is increased. We show the
emperature (T ) profile of the accretion flows in Fig. 8c, where
e find that the temperature jumps suddenly at PSC. In reality,
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Table 2
Deformation parameter (ε), critical point locations (rin, rout), critical point temperatures (T (rin), T (rout)), shock location (rsh), pre-shock
temperatures (T−(rsh)) and post-shock temperatures (T+(rsh)) for shock-induced global accretion solutions presented in Fig. 8.
ε rin rout T (rin) T (rout) rsh T−(rsh) T+(rsh)

(×1010 K) (×1010 K) (×1010 K) (×1010 K)

0 6.3388 154.2915 16.2554 1.1567 22.5278 4.3280 6.3134
1 5.7364 154.2562 17.3149 1.1568 36.1334 3.0595 4.1752
2 5.2186 154.2115 18.2422 1.1571 61.0066 2.1224 2.5985
2.5 4.9869 154.1944 18.6363 1.1572 86.8639 1.6735 1.8726
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Fig. 9. Variation of (a) shock location (rsh), (b) compression ratio (R) and (c)
hock strength (S) with the deformation parameters (ε). Solid (black), dashed
red), dotted (blue), dot-dashed (green) and big-dashed (cyan) curves denote
esults for λ = 3, 3.025, 3.05, 3.075 and 3.1, respectively. Here, we choose
k = 0 and E = 1.0012. See text for details.

ost of the kinetic energy of pre-shock flow is converted into
he thermal energy after the shock transition and hence, the rise
f post-shock temperature is observed as a consequence of PSC
eating. We tabulate the temperature of the shocked accretion
lows at different radii (rin, rout and rsh) in Table 2. In Fig. 8d, we
resent the radial dependence of the vertical scale-height (H/r).
e find that accretion flow maintains H/r < 1 all throughout

rom the outer edge to the horizon even in the presence of
hock transition. In Fig. 8e, we show the profile of adiabatic
ndex (Γ ) as function of r . As expected, Γ anti-correlates with
he flow temperature at all radii. Finally, in Fig. 8f, we depict
he profile of entropy accretion rate (Ṁ) and observe that flow
t PSC possesses high entropy content. With this, we wish to
mphasize that the location of the shock eventually provides the
ize of the PSC that contains swarm of hot electrons. When soft
hotons from the pre-shock disk interact with these hot electrons
ia inverse Comptonization process, high energy radiations are
roduced which are commonly observed in Galactic black hole
-ray binaries (GBH-XRBs) [71–73, and references therein].
In the next, we study the properties of shocks in terms of

he input parameters. For that we consider accretion flow with
= 1.0012 and calculate shock radius (r ) as function of ε for
sh

9

set of angular momentum (λ). Here, we choose ak = 0. The
btain results are presented in Fig. 9a, where solid (black), dashed
red), dotted (blue), dot-dashed (green), and big-dashed (cyan)
urves are for λ = 3.0, 3.025, 3.05, 3.075, and 3.1, respectively.
e find that for a fixed λ, rsh increases with ε, however, shock

s seen to disappear when ε exceeds its critical value εcri. It is
vident from the figure that for a fixed E, εcri decreases as λ
s increased. Therefore, for relatively lower λ, the possibility of
btaining the shocked-induced global accretion solutions is very
uch likely even the strength of deformation is higher and vice
ersa. We also notice that for given ε, rsh settles down at larger
adius for flows with higher λ. This clearly suggests that shocks
nder consideration are centrifugally drive. Since both density
nd temperature of the accreting flow are increased substantially
t PSC, it is therefore worthy to study the compression ratio
R) and shock strength (S). In reality, compression ratio (R =

+/Σ−, ‘−’ and ‘+ ’ refer quantities just before and after the
hock transition) measures the density compression across the
hock front and in Fig. 9b, we show the variation of R as function
f ε for the same set of input parameters as in Fig. 9a. As expected,
decreases with the increase of ε. This happens because the

ensity compression at PSC generally weakens as shock recedes
utward (see Fig. 8b). In Fig. 9c, we depict the variation of S
defined as S = M−/M+ and is a measure of temperature jump at
SC) with ε corresponding to the results presented in Fig. 9a. We
bserve that S decreases with ε for a given λ which agrees with
ur previous findings (see Fig. 8c).
In Fig. 10, we examine the shock properties for flows having

= 3.0 but different energies E. Here, we set ak = 0. In panels
a–c), we present the variation of rsh, R and S with ε, where solid
black), dashed (red), dotted (blue), dot-dashed (green), and big-
ashed (cyan) curves are for E = 1.0011, 1.0013, 1.0015, 1.0017,

and 1.0019, respectively. We find that for a fixed E, rsh increases
with ε and beyond ε < εcri shock disappears. We notice that
for a given λ, εcri decreases for flows with higher energies. It is
worth mentioning that εcri does not bear universal values as it
explicitly depends on the other input parameters. We also find
that for a fixed ε, flow experiences shock transition (rsh) at larger
radii when energy (E) is increased. Further, we observe that for
a given set of (λ, E), both R and S decreases with the increase of
ε. This happens because the enhanced ε pushes the shock front
outwards that reduces the overall density compression as well as
temperature jump at PSC.

4.2. Parameter space for shocks

We already indicate that shock-induced global accretion solu-
tions are not isolated solutions, in fact they exist for wide range of
input parameters. In order to quantify the allowed range of input
parameters, we separate the effective region of the parameter
space in λ − E plane that admits shocked accretion solutions.
Towards this, in Fig. 11, we show the modification of the shock
parameter space due to the increase of ε, where regions bounded
by the solid (black), dashed (red), dotted (blue) and dot-dashed
(green) are obtained for ε = 0, 5, 10 and 15, respectively. Here,
we choose ak = 0. The solid curve depicted the region that
agrees with Fig. 5 from Dihingia et al. [46]. We note that the
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Fig. 10. Variation of (a) shock location rsh , (b) compression ratio (R) and (c)
hock strength (S) as a function of the deformation parameters (ε). Solid (black),
ashed (red), dotted (blue), dot-dashed (green) and big-dashed (cyan) curves
re for E = 1.0011, 1.0013, 1.0015, 1.0017 and 1.0019, respectively. Here, we
ix ak = 0 and λ = 3. See text for details.

Fig. 11. Modification of the shock parameter space in λ− E plane as a function
of deformation parameter (ε). Here, we fix ak = 0.0. Regions bounded with solid
(black), dashed (red), dotted (blue) and dot-dashed (green) curves are obtained
for ε = 0, 5, 10 and 15, respectively. See text for details.
10
Fig. 12. Modification of shock parameter space in λ − E for different Kerr
parameters (ak). Here, we choose ε = 0.02. Effective regions bounded using
solid (black), dashed (red) and dotted (blue) curves are obtained for ak = 0, 0.5
nd 0.99, respectively. See text for details.

omain of the parameter space for shock gradually increases
ith the increase of ε and shifts towards the higher energy and

ower angular momentum sides. This findings clearly indicate
hat the possibility of shock formation is eventually increased as
he spacetime deformation is increased. In addition, low angular
omentum flow around black hole seems to possess standing
hock provided the level of spacetime deformation is relatively
igh and vice versa.
Next, we intend to examine the role of black hole spin (ak)

in modifying the effective region of parameter space in (λ − E)
lane for standing shock. In Fig. 12, we show the results where
hock parameter space is calculated for ε = 0.02 considering
ifferent ak. The effective regions bounded with solid (black),
ashed (red) and dotted (blue) curves correspond to ak = 0, 0.5,
nd 0.99, respectively. We find that the allowed region for the
tanding shock solution shifts towards lower angular momentum
s ak increases. This shift occurs because the marginally stable
ngular momenta of the accreting material goes down when ak
s increased [74].

.3. Zero angular momentum flow

In this section, we study the zero angular momentum flow
ZAMF, λ = 0) in deformed Kerr spacetime. While doing this, we
eparate the region in the ε − E plane according to the nature
f the accretion solutions (see Fig. 3). In Fig. 13, we depict the
btained results for λ = 0 and ak = 0, where the region
ounded using red curves are obtained for multiple critical points.
his region is further sub-divided into two domains using dashed
blue) curves (Ṁin = Ṁout), namely A and W, respectively. The
haded region (cyan) marked as S admits shock-induced global
ccretion solutions for ZAMF. The remaining regions marked as A
nd I allow accretion solutions that possess single critical points
rin for I, and rout for O).

Next, we examine how the accretion solutions are modified
ue to the change of ε for ZAMF. In Fig. 14, we depict the
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Fig. 13. Separation of parameter space in the ε−E plane according to the nature
f flow solutions (O, A, W, S, I). Here, we choose λ = 0.0 and ak = 0.0. See text
or details.

btained results where Mach number (M) is plotted as func-
ion of radial coordinate (r). Here, we choose λ = 0, E =

.0255 and ak = 0. In each panel, solid (black) curve denotes
ccretion solution whereas dashed (blue) curve refers the corre-
ponding wind branch. In panel (a), (b), (c) and (d), we consider

= 0, 5, 10 and 15 that yield only outer critical points at
rout = 16.7040, 15.8656, 14.8279 and 13.3763, respectively. As
the spacetime deformation is increased further to ε = 16, we
observe that the inner critical point appears at rin = 4.3305 along
with rout = 12.9792, which is shown in panel (e). We further
find Ṁin > Ṁout and observe that standing shock conditions
are satisfied at rsh = 6.0645 as shown using vertical arrow. The
compression ratio and shock strength for this shock jump are
calculated as R = 1.2408 and S = 1.2677, respectively. Needless
to mention that the formation of shock in ZAMF is evidently
resulted due to the spacetime deformation under consideration.
The arrows indicate the overall direction of the flow motion. Here,
we wish to emphasize that for the first time to our knowledge, we
obtain the zero angular momentum shocked accretion solution
around black holes embedded in deformed Kerr spacetime. In
panel (f), flow solutions are plotted for ε = 16.5, where the
critical points are calculated as (rin, rout) = (4.0617, 12.7550).
Although flow contains multiple critical points and Ṁin > Ṁout,
shock transition does not happen as shock conditions are not
satisfied. For ε = 17, accretion flow still possesses multiple criti-
cal points, however, changes its character as shown in Fig. 14g.
We notice that the solution passing through rout = 12.5073
no longer connects the horizon (rH) with the outer edge of the
disk (redge), instead the solution passing through rin = 3.9067
smoothly connects rH and redge. Moreover, we get Ṁin < Ṁout
that disfavors the shock transition. For further increase of ε = 18,
we obtain qualitatively similar solution as shown in panel (h), but
the critical points are shifted as (rin, rout) = (3.7102, 11.9028).
For the limiting value of ε = 19, outer critical point disappears
leaving only the inner critical point at rin = 3.5821 as depicted in
Fig. 14i. Solutions of this kind resemble the advection-dominated
accretion flows (ADAF) as reported in earlier works [14,18,75].
With this, we indicate that spacetime deformation plays viable
role in determining the overall nature of the accretion solutions
11
around black hole including shocks. We summarize the critical
point locations and the nature of the accretion solutions by means
of ε in Table 3.

5. Naked singularity in deformed kerr spacetime

In deformed Kerr spacetime, the flow solutions around central
object behave differently as the suitable combination of ε and
ak yields naked singularity. Towards this, we employ the horizon
condition as g rr

= g−1
rr = 0 and upon simplification, we get

r5H − 2r4H + a2kr
3
H + a2kε = 0, (31)

where rH denotes event horizon. For a suitable choice of (ak, ε),
when Eq. (31) does not provide any real roots, the central object
evidently represents the naked singular spacetime, instead of
black hole. Considering such scenario, we study the properties of
the hydrodynamic flow around the naked singularity and exam-
ine how ε and ak regulate the nature of the accretion solutions.
While doing so, we follow the same methodologies as discussed
in Section 3.

5.1. Critical point properties

In Fig. 15, we present the variation of the flow energy (E) with
rc for (ak, ε) = (0.99, 0.03) that renders naked singularity. The
obtained results plotted using black, blue, red and green curves
are for λ = 1.84, 1.86, 1.88 and 1.90, respectively. For each λ,
solid, dotted and dashed curves represent saddle, nodal and spiral
(or O-type) critical points. We observe that unlike black hole
case, there exists four critical points in an energy range (E ≥ 1)
that eventually depends on the angular momentum of the flow
(λ). On the contrary, when E < 1, flow may have single or at
most three critical points depending on λ. Interestingly, we note
that the critical points located closest to the central singularity
are of spiral type and hence they are not physical as accretion
flow cannot pass through them. For a given λ, the critical points
are in general arise in sequence starting from the inner most
one as spiral–saddle–nodal–spiral–nodal–saddle, provided flow
possesses multiple critical points.

5.2. Flow solutions of different kinds

In Fig. 16, we present all possible type of flow solutions around
naked singularity, where the variation of Mach number (M) as
function of radial distance (r) is depicted in each panel. Here, we
choose ak = 0.99 and ε = 0.03 that yields naked singularity.
In panel (a), we fix λ = 1.82 and E = 1.0137, and obtain two
critical points; the closest one from the singularity is of spiral type
formed at rs1 = 1.1493 (filled asterisk) and the furthest one is of
saddle type located at rout = 17.4339 (filled circle). We calculate
the flow solutions passing through rout and plot the accretion and
wind branches using solid and dashed curves, respectively. We
note that during the course of accretion, rotating transonic flow
usually piles up and hence tends to co-rotate along a surface close
to the naked singularity usually known as naked surface [43]. This
feature is clearly seen in panel (a) as M for accretion drops down
round the singular point. In Fig. 16b, we show the flow solutions
or λ = 1.85 and E = 1.0137, where four critical points are
obtained. Among them, two are saddle type (rin = 1.8155 and
rout = 16.9517 marked as filled circles) and remaining two are
spiral type (rs1 = 1.1832 and rs2 = 3.7319 marked as filled
asterisks). As before, solid and dashed curves denote the accretion
and wind branches. We notice that solution passing through rout
connects the naked surface and the outer edge of the disk (redge),
however, flow possesses rin does not extend up to redge, instead it
becomes closed in between r and r . Moreover, we find Ṁ >
in out in
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Fig. 14. Variation of Mach number (M) with the radial distances (r) for zero angular momentum (λ = 0) flows. Here, we set E = 1.0255 and ak = 0. Results depicted
n panels (a) to (i) correspond to smooth variation of ε marked in respective panels. Solid (black) and dashed (blue) curves denote the accretion and wind solutions,
espectively. Critical points (rin, rout) are marked using filled circles. Arrows (red) indicate the direction of flow motion for shock-induced global accretion solution
solid, red line) is shown where we obtain rsh = 6.0645. See text for details.
Table 3
Deformation parameters (ε), inner critical points (rin) and orbit, outer critical points (rout) and orbit, shock location
(rsh), flow types for accretion solutions presented in Fig. 14.
ε rin (saddle) Orbits rout (saddle) Orbits rsh Types

0 – – 16.7040 Heteroclinic – O
5 – – 15.8656 Heteroclinic – O
10 – – 14.8279 Heteroclinic – O
15 – – 13.3763 Heteroclinic – O
16 4.3305 Homoclinic 12.9792 Heteroclinic 6.0645 A, S
16.5 4.0617 Homoclinic 12.7550 Heteroclinic – A
17 3.9067 Heteroclinic 12.5073 Homoclinic – W
18 3.7102 Heteroclinic 11.9028 Homoclinic – W
19 3.5821 Heteroclinic – – – I
a
f

5

t
d

˙ out. In panel (c), we choose λ = 1.87 and E = 1.0137 and again
obtain two saddle and two spiral critical points at rin = 1.5073,
out = 16.6046, rs1 = 1.2339, and rs2 = 4.2651, respectively.
ere we observe that the overall nature of the flow solutions is
hanged compared to the solutions presented in (b) and Ṁin <
˙ out. In fact, solution passing through rout becomes closed, but
he same containing rin smoothly connects naked surface and redge.
n panel (d), we set λ = 1.85 and E = 1.025, and find rs1 =

.1856 (filled asterisk) and rin = 1.6893 (filled circle). As before,
olid and dashed curves passing through r denote the accretion
in

12
nd wind branches. Finally, we wish to mention that all these
low solutions are in agreement with the results reported in [43].

.3. Deformation parameter (ε) separating BH and NS

In this section, we intend to determine the range of deforma-
ion parameter (ε) that yields the black hole spacetime. While
oing this, for a given ak, we freely vary ε, λ, and E (> 1) that

provides a maximum limit of ε (= εmax) such that the flow from
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Fig. 15. Variation of flow energy (E) with the critical points (rc ) for different
angular momentums (λ). Here, we choose ak = 0.99 and ε = 0.03. Saddle, nodal
and O-type critical points are indicated with the solid, dotted and dashed curves.
Horizontal line (dot-dashed) is plotted at specific energy E = 1. A part of the
plot is zoomed for the purpose of clarity. See text for details.

the outer edge of the disk smoothly accretes onto the black hole
(see inset panels of Fig. 3). When ε > εmax, the accreting matter
starts to pile up around the O-type critical points very close to the
central singularity (see Fig. 16) resulting the inaccessible region
(called naked surface) to the flows. With this, in Fig. 17, we
present the obtained results where solid (black) curve denotes the
upper limit of deformation parameter (εmax) as function of ak that
separates the domain of black holes (shaded in rainbow color)
from the naked singularities (shaded in gray). This findings are in
agreement with εmax(ak) which is obtained by solving Eq. (31). In
the figure, color code denotes the maximum angular momentum
(λmax) corresponding to a given set of (ak, ε) that admits closed
solution passing through rin (see panel (A) of Fig. 3). The colorbar
indicates the range of λmax. We find that for ε → 0, λmax

gradually decrease with the increase of ak which is consistent
with Figure 5 of [46]. On the contrary, we note that for a given
ak, λmax decreases with the increase of ε. Here, we restrict our
analysis to the observational limit of the deformation parameter
ε ≤ 19 [36] and observe that the present analysis carried out
based on accretion theory appears is consistent with [27,39].
With this, we emphasize that accretion phenomenon offers an
alternative approach in distinguishing the nature of the central
source embedded in deformed Kerr spacetime. Moreover, since
the accretion solutions successfully delineate the observational
findings of extremely gravitating objects, we also infer that the
present formalism would be immensely useful in explaining the
astrophysical sources.

6. Summary and conclusions

In this paper, we study the structure of a relativistic, inviscid,
accretion flow in the JP spacetime [27] that describes the compact
gravitating object embedded in deformed spacetime. We solve
the conservation equations that governs the dynamics of the
accretion flow around the central object and examine the role
13
of spacetime deformation (ε) in controlling the global accretion
solutions in presence and absence of shock waves. We note that
the spacetime geometry under consideration represents either
BH or NS depending on the spacetime parameters (ak, ε). We
summarize our findings below.

We find that depending on the input parameters, namely
energy (E), angular momentum (λ), spin parameter (ak), and
deformation parameter (ε), flow may contain either single or
multiple critical points around BH and NS (see Figs. 1 and 15).
We obtain the flow solutions containing single critical point and
find that for increasing ε, the nature of the solutions changes as it
possesses multiple critical points (see Figs. 2 and 16). We identify
the effective domain of the parameter space in λ − E plane for
multiple critical points which is further sub-divided based on the
entropy criteria i.e., Ṁin ≶ Ṁout, rin and rout being the inner and
outer critical points, respectively (see Fig. 3). Further, we classify
the multiple critical point parameter space in terms of both ε

and ak, and find that parameter space strongly depends on them
(see Figs. 4 and 5). Accretion flows containing multiple critical
points are of special interest as they may contain shock waves
and shock-induced global accretion solution is perhaps essential
to understand the observational signatures of black holes [72,76–
80].

One of the aims of the present paper is to calculate the global
shocked accretion solution in deformed spacetime and examine
the shock dynamics as a function of ε. We find that for flows
with fixed input parameters, shock settles down at larger radius
as the ε is increased (see Fig. 7). Since the shock location provides
the size of PSC and PSC inverse Comptonizes the soft photons
from the pre-shock flow to produce high energy radiations, it
is therefore worthy to examine the shock properties as they
are likely to decide the nature of emitted photons from PSC.
Accordingly, we examine the variation of shock location (rsh),
compression ratio (R) and shock strength (S) as function of input
parameters (see Figs. 9 and 10).

We separate the region of the parameter space in λ − E plane
that admits standing shock. We find that for ak = 0, as ε is
increased, the effective region of the parameter space is increased
and shifted to lower angular momentum and higher energy sides.
This suggests that the possibility of shock formation is enhanced
for higher ε provided relativistic shock conditions are satisfied
(see Fig. 11). Similarly, for fixed ε, we obtain shock parameter
space at relative higher angular momentum when ak is small and
vice versa (see Fig. 12).

Further, for the first time to our knowledge, we report that
zero angular momentum flow (ZAMF, λ = 0) can harbor standing
shock around BHs embedded in deformed Kerr spacetime. We
find that such shocked accretion solutions are possible when the
spacetime deformation is sufficiently high (see Fig. 13). Accord-
ingly, we infer that the spacetime deformation plays the pivotal
role for the formation of standing shock in ZAMF (see Fig. 14).

We also observe that the nature of the central source in
deformed Kerr spacetime may yield as naked singularity (NS).
This usually happens when the horizon condition (Eq. (31)) does
not provide real roots for a given set of (ak, ε). Considering this,
we calculate the flow solutions involving either single and/or
multiple critical points (see Fig. 16). Moreover, analyzing the
accretion dynamics, we separate the domain of BH from NS in
ak − ε plane and find that obtained results are in agreement
with Johannsen and Psaltis [27] and Bambhaniya et al. [39]. With
this, we infer that the present formalism offers an alternative
approach to examine the nature of the central source (either BH
or NS) embedded in deformed Kerr spacetime (see Fig. 17).

Few comments may be worthy to mention. Although a similar
observation was reported in the case of Kerr–Taub–NUT (KTN)

metric [43,68], the accretion solutions obtained from KTN metric
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Fig. 17. Parameter space in ak − ε plane that admits flow solutions. Thick solid
curve separates the effective domains for BH and NS, respectively. In BH region,
color map denotes the 2D projection of 3D plot of ak, ε and maximum angular
omentum λmax . The vertical color bar indicates the range of λmax . See text for

details.

and JP metric cannot be compared on the same footing. The fact is
that KTN metric is a solution of a particular gravitation equation,
whereas the exact gravitation dynamics that leads to JP metric
remains unclear till date. In reality, the JP metric is regarded
as the deformation (parameterized with ε) of the usual Kerr
solution. Moreover, the nut parameter (n) in KTN metric is a hair
of the black hole and hence it has an extra macroscopic parameter
on top of source mass and spin. On the contrary, JP metric does
not contain any such extra hair except mass and spin. Accord-
ingly, ε is not introduced as a new macroscopic entity of the
black hole, instead it quantifies the deformation of the usual Kerr
spacetime. Under these circumstances, the nut parameter (n) and
cannot be treated on equal footing. Since these two spacetimes
JP and KTN) are fundamentally different in nature, it is very much
xpected that the influences of these spacetime in describing
he accreting dynamics will not be identical. Hence, the study of
he accretion flow properties around them seems important and
ssential, particularly as case by case manner. In this work, we
 g

14
have done exactly the same and accordingly, we realize that ε in
JP metric and n in KTN metric play similar role (yet not identical)
in regulating the accretion solutions. Moreover, beyond a limiting
value of ε, the nature of flow solution does not comply with the
black hole (BH) background, instead it resembles to the central
source that is yielded as naked singularity (NS), which perhaps
indicates the following possible implications. Bambhaniya et al.
[39] reported that for θ = π/2, the horizon ceases to exist for
a given set of (ak ≤ 1, ε), while horizon exists far from the
equatorial plane. Hence, the object is naked only along θ = π/2
lane and since the present work is carried out on this plane, it
s natural to obtain NS solutions. On the contrary, KTN spacetime
esults NS (ak > 1, n) irrespective of θ values. This yields a
ossible conjecture that the accretion dynamics seem to depend
n the existence of horizon on the disk equatorial plane and
ossibly it does not crucially depends on the existence or non-
xistence of horizon on θ ̸= π/2 planes. Needless to mention
hat the above findings are realized from the present study only,
lthough we infer that this suggestive conjecture needs further
nvestigation for its conclusiveness.

Finally, we mention that the present study does not include
ny dissipation processes, namely viscosity, radiative cooling etc.
oreover, we neglect magnetic fields as well for simplicity. All

hese physical processes are indeed relevant in accretion disc,
owever, implementation of these processes are beyond the
cope of the present work. We plan to take up these issues in
ur future works and will be reported elsewhere.
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ppendix. Derivation of dv
dr at the critical point rc

After applying the l′Hôpital’s rule, we get the radial velocity gradient at the critical point as

dv
dr

⏐⏐⏐⏐
c
=

−B ±
√
B2 − 4AC
2A

,

where the explicit form of the quantities A, B and C are calculated as follows:

A = γ 2
v

[
1 +

2C2
s

(Γ + 1)v2

]
+

4γ 4
v Θ

v2(2N + 1)
∂

∂Θ

(
C2
s

Γ + 1

)
,

=
8γ 2

v Θ

v(2N + 1)

[
N11 + N12 −

3ε
2r4

N13

]
∂

∂Θ

(
C2
s

Γ + 1

)
,

=
d2Φeff

dr2
+

4Θ
2N + 1

[
N11 + N12 −

3ε
2r4

N13

]2
∂

∂Θ

(
C2
s

Γ + 1

)
−

2C2
s

Γ + 1

[
N ′

11 + N ′

12 + N14 +
3a2kε

2r4(∆ + a2kh)2

(
∆′

−
3a2kε
r4

)]
,

11 =
5
2r

+
r − a2k(1 + h)
r(∆ + a2kh)

,N12 = −
1
2F

dF
dr

,N13 =
1

1 + h
+

a2k
∆ + a2kh

,

N14 =
6ε

r5(1 + h)
−

9ε2

2r8(1 + h)2
+

6a2kε
r5(∆ + a2kh)

,

∂

∂Θ

(
C2
s

Γ + 1

)
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2Γ
(f + 2Θ)(Γ + 1)

−
2ΘΓ (2 + f ′)

(f + 2Θ)2 (Γ + 1)
−
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(f + 2Θ)(Γ + 1)2
+

2ΘΓ ′

(f + 2Θ)(Γ + 1)
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∂ f
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dh′
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12ε
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,N111 = r3 + a2k(r + 2)(1 + h) − 4akλ(1 + h) − λ2
k(r − 2)(1 + h),

′

111 =
dN111

dr
= 3r2 + a2k(r + 2)h′

+ a2k(1 + h) − 4akλh′
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ere, all the quantities have their usual meaning.
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