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ABSTRACT

In mathematics, we often come across finite dimensional vector spaces

and finitely generated abelian groups. These are natural examples of finitely

generated modules. The main aim of the project is to understand the struc-

ture of finitely generated modules and to prove a basic lemma about them

called the Nakayama lemma.
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Chapter 1

Introduction

One of the things which distinguishes the modern approach to Commutative

Algebra is the greater emphasis on modules, rather than just on ideals. An

ideal a and its quotient ring A/a are both examples of modules. The collec-

tion of all modules over a given ring contains the collection of all ideals of

that ring as a subset. The concept of modules is in fact a generalization of

the concept of ideals. In this chapter, we give the definition and elementary

properties of modules.

Throughout this report, let A denote a commutative ring with unity 1.

1.1 Modules and module homomorphisms

Definition 1.1.1. An A-module is an abelian group M (written additively)

on which A acts linearly: more precisely, an A-module is a pair (M,µ), where

M is an abelian group and µ is a mapping from A×M into M such that for

all a, b ∈ A and for all x, y ∈ M , the following axioms are satisfied:

µ(a, x+ y) = µ(a, x) + µ(a, y)

µ(a+ b, x) = µ(a, x) + µ(b, x)
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µ(ab, x) = µ(a, bx)

µ(1, x) = x

Equivalently, M is an abelian group together with a ring homomor-

phism A → E(M), where E(M) denotes the ring of all endomorphisms

of the abelian group M , the ring homomorphism A → E(M) being given by

a 7→ µ(a, .).

The notation ax is more generally used for µ(a, x).

Examples: 1) An ideal a of A is an A-module. In particular, A itself is an

A-module.

2) If A is a field k, then A-module= k-vector space.

3) If A = Z, then Z-module=abelian group (define nx to be x+ · · ·+ x).

4) If A = k[X] where k is a field, then an A-module M is a k-vector space

together with a linear transformation. [Since M is an A-module, there exists

a ring homomorphism A → E(M). The image of the element X(∈ A) in

E(M) under this ring homomorphism is a linear transformation from M to

itself. This is the required linear transformation.]

Definition 1.1.2. Let M,N be A-modules. A mapping f : M → N is called

an A-module homomorphism if

f(x+ y) = f(x) + f(y)

f(ax) = a.f(x)

for all a ∈ A and all x, y ∈ M .

Thus f is a homomorphism of abelian groups which commutes with the

action of each a ∈ A. If A is a field, then a A-module homomorphism is the
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same thing as a linear transformation of vector spaces.

The composition of A-module homomorphisms is again an A-module ho-

momorphism.

The set of all A-module homomorphisms from M to N can be turned

into an A-module as follows: For any two A-module homomorphisms f and

g (from M to N), we define f + g and af by the rules

(f + g)(x) = f(x) + g(x)

(af)(x) = a.f(x)

for all x ∈ M . It is trivial to check that all the axioms for an A-module are

satisfied. This A-module is denoted by HomA(M,N) (or just Hom(M,N)

if there is no ambiguity about the ring A).

Homomorphisms u : M ′ → M and v : N → N ′′ induce mappings ū :

Hom(M,N) → Hom(M ′, N) and v̄ : Hom(M,N) → Hom(M,N ′′) defined

as follows:

ū(f) = f ◦ u and v̄(f) = v ◦ f.

These mappings are A-module homomorphisms.

For any A-module M , there is a natural isomorphism Hom(A,M) ∼= M :

any A-module homomorphism f : A → M is uniquely determined by f(1),

which can be any element of M .
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1.2 Submodules and quotient modules

Definition 1.2.1. A submodule M ′ of an A-module M is a subgroup of M

which is closed under multiplication by elements of A.

Definition 1.2.2. LetM be an A-module andM ′ be a submodule ofM . The

abelian group M/M ′ then inherits an A-module structure from M , defined

by

a(x+M ′) = ax+M ′

The A-module M/M ′ is called the quotient of M by M ′.

The natural map π from M onto M/M ′ given by x 7→ x + M ′ is an A-

module homomorphism. There is a one-to-one order-preserving correspon-

dence between submodules of M/M ′ and submodules of M which contain

M ′, given by U 7→ π−1(U) for any submodule U of M/M ′.

Definition 1.2.3. If f : M → N is an A-module homomorphism, the kernel

of f is the set

Ker(f) = {x ∈ M : f(x) = 0}

and is a submodule of M .

Definition 1.2.4. If f : M → N is an A-module homomorphism, the image

of f is the set

Im(f) = {f(x) : x ∈ M} = f(M)

and is a submodule of N .

Definition 1.2.5. If f : M → N is an A-module homomorphism, the cok-

ernel of f is

Coker(f) = N/Im(f)
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which is a quotient module of N .

Let M,N be two A-modules and f : M → N be an A-module homomor-

phism. If M ′ is a submodule of M such that M ′ ⊆ Ker(f), then f gives rise

to a A-module homomorphism f̄ : M/M ′ → N , defined as follows:

f̄(x+M ′) := f(x)

This map f̄ is well-defined because if x + M ′ = y + M ′, then x − y ∈ M ′

and M ′ ⊆ Ker(f), hence f(x − y) = 0, that is f(x) = f(y), which in turn

implies that f̄(x+M ′) = f̄(y+M ′). The kernel of f̄ is Ker(f)/M ′ and this

map f̄ is onto Im(f). The homomorphism f̄ is said to be induced by f . In

particular, taking M ′ = Ker(f), we have an isomorphism of A-modules

M/Ker(f) ∼= Im(f). (1.1)

The above equation is also known as the first isomorphism theorem.

1.3 Operation on submodules

Definition 1.3.1. Let M be an A-module and let {Mi}i∈I be a family of

submodules of M . Their sum Σi∈IMi is the set of all finite sums Σi∈Ixi,

where xi ∈ Mi for all i ∈ I and almost all the xi (that is, all but a finite

number) are zero.

It is easy to check that Σi∈IMi is the smallest submodule of M which

contains all the Mi. The intersection
⋂

i∈I Mi is again a submodule of M .

Theorem 1.3.2. (i) If L ⊇ M ⊇ N are A-modules, then

(L/N)/(M/N) ∼= L/M.
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(ii) If M1, M2 are submodules of M , then

(M1 +M2)/M1
∼= M2/(M1 ∩M2).

Proof. (i) Define θ : L/N → L/M by θ(x +N) = x +M . Then θ is a well-

defined A-module homomorphism of L/N onto L/M and its kernel is M/N .

Hence the proof follows from the first isomorphism theorem (equation 1.1).

(ii) Consider the inclusion homomorphism ι : M2 → M1 + M2 given by

m2 7→ m2. Also consider the homomorphism π : M1 +M2 → (M1 +M2)/M1

given by x 7→ x + M1. The composition π ◦ ι : M2 → (M1 + M2)/M1 is

a module homomorphism. It is surjective, since π is surjective. And the

kernel of π ◦ ι is M1∩M2. Hence the proof follows from the first isomorphism

theorem (equation 1.1).

Definition 1.3.3. Let M be an A-module and let a be an ideal of A. The

product aM is the set of all finite sums Σaixi with ai ∈ a and xi ∈ M .

It can be easily checked that aM is a submodule of M .

Definition 1.3.4. Let M be an A-module and let N,P be submodules of

M . We define (N : P ) to be the set of all a ∈ A such that aP ⊆ N .

It can be easily checked that (N : P ) is an ideal of A.

Definition 1.3.5. Let M be an A-module. (0 : M) is the set of all a ∈ A

such that aM = 0, this ideal is called the annihilator of M and is denoted

by Ann(M).

Definition 1.3.6. An A-module M is called faithful if Ann(M) = 0.

If a is an ideal of A such that a ⊆ Ann(M), then we may regard M as

an A/a-module, as follows:
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For any x+ a ∈ A/a and m ∈ M , define

(x+ a)m := xm.

Observe here that if x + a = y + a, then x − y ∈ a ⊆ Ann(M). Hence for

any m ∈ M , (x− y)m = 0, that is, xm = ym.

If Ann(M) = a, then M is faithful as an A/a-module.

1.4 Direct sum and product

Definition 1.4.1. Let {Mi}i∈I be a family of A-modules. Their direct sum

⊕i∈IMi is the set of all tuples (xi)i∈I such that xi ∈ Mi for all i ∈ I and all

but finitely many xi are 0. This set ⊕i∈IMi has a natural structure of an

A-module given by:

(xi)i∈I + (yi)i∈I = (xi + yi)i∈I

a(xi)i∈I = (axi)i∈I

for all a ∈ A and for all (xi)i∈I , (yi)i∈I ∈ ⊕i∈IMi.

Definition 1.4.2. Let {Mi}i∈I be a family of A-modules. Their direct prod-

uct Πi∈IMi is the set of all tuples (xi)i∈I such that xi ∈ Mi for all i ∈ I. This

set Πi∈IMi has a natural structure of an A-module given by:

(xi)i∈I + (yi)i∈I = (xi + yi)i∈I

a(xi)i∈I = (axi)i∈I

for all a ∈ A and for all (xi)i∈I , (yi)i∈I ∈ Πi∈IMi.

Observe that the difference between the above two definitions is that in

the definition of the direct product, we have dropped the condition that “all
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but finitely many xi are 0”. Direct sum and direct product are therefore the

same if the index set I is finite, but not otherwise, in general.

Theorem 1.4.3. Let A be a ring. Then A is isomorphic to a direct sum of

finitely many ideals of A if and only if A is isomorphic to a direct product of

finitely many rings.

Proof. Suppose A ∼= Πn
i=1Ai where Ai are rings. For each i ∈ {1, . . . , n},

define

ai := {(0, . . . , 0, ai, 0, . . . , 0) ∈ Πn
i=1Ai|ai ∈ Ai}.

Then each ai is an ideal of A. The ring A ∼= Πn
i=1Ai can be considered as an

A-module. Since each ai is an ideal of A, therefore each ai is an A-module,

hence the direct sum a1 ⊕ · · · ⊕ an has also the structure of an A-module.

Consider the map φ : Πn
i=1Ai → a1 ⊕ · · · ⊕ an given by

φ(a1, . . . , an) := ((a1, 0, . . . , 0), . . . , (0, . . . , 0, ai, 0, . . . , 0), . . . , (0, . . . , 0, an)).

It is easy to verify that φ is an isomorphism of A-modules.

Conversely, suppose A ∼= I1⊕· · ·⊕In where I1, . . . , In are ideals of A. For

each i ∈ {1, . . . , n}, define bi := ⊕j 6=iIj. For each i ∈ {1, . . . , n}, Consider

the map fi : A = I1 ⊕ · · · ⊕ In → Ii given by fi(x1, . . . , xn) := xi. Clearly

each fi is an onto A-module homomorphism, whose kernel is bi. Therefore,

by the first isomorphism theorem (equation 1.1), we have A/bi ∼= Ii. Since A

is a ring, therefore each A/bi is a ring, call it Ci. Now since A ∼= I1⊕· · ·⊕In

and Ci
∼= Ii for each i ∈ {1, . . . , n}, we have A ∼= C1 ⊕ · · · ⊕ Cn. But for

finite indexing sets, direct sums and direct products are the same. Therefore

we have C1 ⊕ · · · ⊕ Cn = Πn
i=1Ci and hence A ∼= Πn

i=1Ci.

8



Chapter 2

Finitely generated modules

In this chapter, we will study the structure of finitely generated modules and

prove a basic lemma about them called the Nakayama lemma.

2.1 Free modules

Definition 2.1.1. A free A-module is an A-module which is isomorphic to

an A-module of the form ⊕i∈IMi, where each Mi
∼= A (as an A-module).

Such a module is denoted by A(I).

Definition 2.1.2. Let n be a fixed non-negative integer. A free A-module

of rank n is an A-module that is isomorphic to A⊕ · · · ⊕ A (n summands),

which is denoted by An. The integer n is called the rank of the free module

An. (Conventionally, A0 is the zero module.)

Definition 2.1.3. An ideal I in a commutative ring R is called a principal

ideal if there exists some a ∈ R such that I = {ra|r ∈ R}.

Definition 2.1.4. An integral domain R is called a principal ideal domain

if every ideal in R is a principal ideal.
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Theorem 2.1.5. Let A be a principal ideal domain and M be a free module

of rank n over A. Let N be a submodule of M . Then N is also free of rank

≤ n.

Proof. The proof is by induction on n. If n = 1, we have M ∼= A as an

A-module and N is isomorphic to an ideal I of A. Since A is a principal

ideal domain, therefore I = {ax|a ∈ A} for some x ∈ A. If x = 0, then I = 0

and hence I is free of rank 0 ≤ 1. If x 6= 0, then I ∼= A (the map φ : A → I

given by a 7→ ax being an isomorphism), and hence I is free of rank 1. This

proves the base case of induction. Assume now that the theorem is true for

n−1 and consider a submodule N of M . Let x1, . . . , xn be a basis of M . Let

J := {an ∈ A|a1x1 + . . .+ anxn ∈ N, ai ∈ A}.

Since N is a submodule of M , therefore J is an ideal of A. Since A is a

principal ideal domain, J = {ad|a ∈ A} for some d ∈ A.

If d = 0, then N ⊆< x1, . . . , xn−1 >, the free submodule generated by

x1, . . . , xn−1 and by induction, N is free of rank ≤ n− 1. If d 6= 0, choose an

element y ∈ N such that y = b1x1 + b2x2 + · · · + bn−1xn−1 + dxn. We claim

that N = N∩ < x1, . . . , xn−1 > ⊕Ay.

Let x ∈ N so that x = c1x1+ . . .+cnxn. Then cn = λd for some λ ∈ A. Then

x−λy = x′ ∈ N∩ < x1, . . . , xn−1 >. So x = x′+λy. To prove the uniqueness,

let z ∈ N∩ < x1, . . . , xn−1 > ∩Ay so that z = a1x1 + . . . + an−1xn−1 =

µ(b1x1 + . . .+ bn−1xn−1 + dxn) for some µ ∈ A. Since x1, . . . , xn are linearly

independent, the coefficient of xn, that is, µd = 0. This implies µ = 0,

that is, z = 0. Hence N = N∩ < x1, . . . , xn−1 > ⊕Ay. By induction,

N∩ < x1, . . . , xn−1 > is free of rank ≤ n − 1 so that N is free of rank

≤ n.
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2.2 Structure of finitely generated modules

Definition 2.2.1. Let M be an A-module and let x ∈ M . The set of all

multiples ax(a ∈ A) is a submodule of M , denoted by Ax or < x >. This

submodule of M is called the cyclic submodule of M generated by x.

Definition 2.2.2. Let M be an A-module and let xi ∈ M for all i ∈ I,

where I is some indexing set. If M = Σi∈IAxi, then the set {xi|i ∈ I} is

called a set of generators of M .

This means that every element ofM ca be expressed (not necessarily uniquely)

as a finite linear combination of the xi with coefficients in A.

Definition 2.2.3. An A-module M is said to be finitely generated if it has

a finite set of generators.

Examples: 1) Any finite dimensional vector space over a field k is a finitely

generated k-module.

2) Any finitely generated abelian group is a finitely generated Z-module. In

particular, finite abelian groups are finitely generated Z-modules.

3) The module of polynomials in one variable x over the ring A of degree

at most n is a finitely generated A-module. This module is generated by

1, x, x2, . . . , xn.

Theorem 2.2.4. M is a finitely generated A-module if and only if M is

isomorphic to a quotient of An for some integer n > 0.

Proof. Suppose M is a finitely generated A-module. Let x1, . . . , xn be gen-

erators of M . Define φ : An → M as

φ(a1, . . . , an) := a1x1 + · · ·+ anxn.
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Clearly then φ is an A-module homomorphism onto M . Hence by the first

isomorphism theorem (equation 1.1), we have M ∼= An/Ker(φ). That is, M

is isomorphic to a quotient of An.

Conversely, suppose M ∼= An/B for some integer n > 0 and for some sub-

module B of An. Then we have a natural A-module homomorphism π of

An onto An/B ∼= M , given by π(a1, . . . , an) 7→ (a1, . . . , an) + B. Let ei :=

(0, . . . , 0, 1, 0, . . . , 0) (the 1 being at the i-th place). Then the ei(1 ≤ i ≤ n)

generate An. Hence π(ei)(1 ≤ i ≤ n) generate M over A. That is, M is a

finitely generated A-module.

Theorem 2.2.5. Let A be a principal ideal domain and M be a finitely-

generated A-module. Then any submodule of M is also a finitely generated

module over A.

Proof. Let N be a submodule of M . Since M is a finitely generated A-

module, we have from theorem 2.2.4 that M is isomorphic to a quotient of

An for some integer n > 0, say, M ∼= An/K. Hence N ∼= F ′/K where F ′

is a submodule of the free module An. By theorem 2.1.5, we have that F ′

is also free over A of rank ≤ n. Hence N is a quotient of a free A-module

by K. Therefore, applying theorem 2.2.4 again, we get that N is finitely

generated.

Theorem 2.2.6. Let M be a finitely generated A-module, let a be an ideal

of A, and let φ be an A-module endomorphism of M such that φ(M) ⊆ aM .

Then φ satisfies an equation of the form

φn + a1φ
n−1 + · · ·+ an = 0

where the ai are in a.
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Proof. Let x1, . . . , xn be a set of generators of M . Then since φ(M) ⊆ aM ,

we have φ(xi) ∈ aM for each i ∈ {1, . . . , n}. Hence for each i ∈ {, . . . , n},

we have φ(xi) = Σn
j=1aijxj for some aij ∈ a. That is, we have the following

system of equations:

Σn
j=1(δijφ− aij)xj = 0 ∀i ∈ {1, . . . , n}

where δij is the kronecker delta. Let D denote the n×n matrix whose (i, j)-

th entry is δijφ− aij. Then the above system of equations is the same as the

matrix equation DX = 0, where X =


x1

x2

...

xn

 and 0 =


0

0
...

0

. By multiply-

ing on the left of the equation DX = 0 by the adjoint of the matrix D, we

get det(D)IX = 0. This implies that the linear operator det(D)I annihilates

each xi. But the xi generate M , hence det(D)I is the zero endomorphism of

M . That is, det(D) = 0. Expanding out the determinant of the matrix D,

we have an equation of the required form.

Corollary 2.2.7. Let M be a finitely generated A-module and let a be an

ideal of A such that aM = M . Then there exists x ≡ 1(mod a) such that

xM = 0.

Proof. Take φ =identity and x = 1 + a1 + · · ·+ an in theorem 2.2.6.

2.3 The Nakayama lemma

In this section, we will prove the famous Nakayama lemma. But for its proof,

we need some preliminaries on ideals, which we provide first.
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Definition 2.3.1. An ideal m in A is called maximal if m 6= A and if there

is no ideal a of A such that m ⊂ a ⊂ A (strict inclusions).

Theorem 2.3.2. Let x ∈ A and Ax := {ax|a ∈ A}. Then Ax is an ideal in

A and Ax = A if and only if x is a unit in A.

Proof. It is easy to verify that Ax is an ideal in A. If x is a unit in A, then

there exists u ∈ A such that ux = 1. So 1 ∈ Ax. Now Ax is an ideal in A

and 1 ∈ Ax together imply that A ⊆ Ax. Hence Ax = A.

Conversely, suppose Ax = A for some x ∈ A. Then since 1 ∈ A, we have

1 ∈ Ax. This implies that 1 equals vx for some v ∈ A, which in turn implies

that x is a unit in A.

Theorem 2.3.3. Let m be a maximal ideal of A and x ∈ m. Then x is not

a unit in A.

Proof. Suppose not, that is, suppose x is a unit in A. Then there exists y ∈ A

such that xy = 1. Now x ∈ m and m is an ideal of A. Therefore, xy ∈ m,

which implies that 1 ∈ m. But the facts that 1 ∈ m and m is an ideal in A,

together imply that m = A, which is absurd. Hence a contradiction.

The proof of theorem 2.3.8 below requires the use of a well known lemma

in set theory called Zorn’s lemma, which we need to state first. But for stat-

ing Zorn’s lemma, we need some definitions, which we provide first:

Definition 2.3.4. Let S be a non-empty set. A binary relation ≺ on S is

called a partial order if ≺ is reflexive, antisymmetric and transitive. The set

S together with a partial order ≺ is called a partially ordered set.

Definition 2.3.5. Let S,≺ be a partially ordered set. A subset T of S is

called a chain of S if for any two elements a, b ∈ T , we have either a ≺ b or

b ≺ a.
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Definition 2.3.6. Let S,≺ be a partially ordered set and Σ be a subset of

S. An element x ∈ S is called an upper bound for Σ if a ≺ x for all a ∈ Σ.

Definition 2.3.7. Let S,≺ be a partially ordered set. An element a ∈ S is

called a maximal element of S if there is no element b ∈ S such that a ≺ b.

We are now ready to state the Zorn’s lemma.

Zorn’s lemma: Let S be a non-empty partially ordered set. If every chain

T of S has an upper bound in S, then S has at least one maximal element.

Theorem 2.3.8. Every non-unit of A is contained in some maximal ideal

of A.

Proof. Let x be an non-unit in A. Then consider the ideal Ax in A. By

theorem 2.3.2, we have Ax 6= A. Let Σx be the set of all ideals a in A

such that a 6= A and Ax ⊆ a. Then Σx is a partially ordered set with re-

spect to the partial order ⊆. The collection Σx is also non-empty because

Ax ∈ Σx. The proof will be over if we can show that there exists a maximal

ideal of A containing the ideal Ax. In other words, we need to show that the

set Σx has a maximal element. For showing this, we will apply Zorn’s lemma.

To apply Zorn’s lemma, we must show that every chain in Σx has an

upper bound in Σx. Let {aα}α∈I be an arbitrary chain in Σx (where I is an

indexing set). Let b := ∪α∈Iaα. Since {aα}α∈I is a chain, it follows that b

is an ideal in A. Also 1 /∈ b since 1 /∈ aα for all α [This is because if 1 ∈ aα

for some α, then since aα is an ideal of A, we will have aα = A, which is

a contradiction.]. Moreover, Ax ⊆ b since Ax ⊆ aα for all α ∈ I. Hence

b ∈ Σx, and b is an upper bound of the chain {aα}α∈I . Therefore, by Zorn’s

lemma, Σx has a maximal element.
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Definition 2.3.9. The Jacobson radical R of A is defined to be the inter-

section of all the maximal ideals of A.

Theorem 2.3.10. Let R be the Jacobson radical of A. Then x ∈ R if and

only if 1− xy is a unit in A for all y ∈ A.

Proof. Suppose 1− xy is not a unit in A for some y ∈ A. Then by theorem

2.3.8, we have that 1 − xy belongs to some maximal ideal m of A. But

x ∈ R ⊆ m, hence xy ∈ m. Therefore 1 = (1− xy) + xy ∈ m, which implies

that m = A. But this is absurd since any maximal ideal is 6= A.

Conversely, suppose x /∈ R. Then x /∈ m for some maximal ideal m. Then m

and x together generate the ideal m+Ax which contains m properly. Hence

by maximality of m, we must have that m+Ax = A. So we have 1 = u+ yx

for some u ∈ m and some y ∈ A. Hence 1 − yx = 1 − xy = u ∈ m and is

therefore not a unit (by theorem 2.3.3).

Theorem 2.3.11. (Nakayama lemma) Let M be a finitely generated A-

module and a be an ideal of A contained in the Jacobson radical R of A.

Then aM = M implies M = 0.

Proof. By corollary 2.2.7, we have that xM = 0 for some x ≡ 1(mod R). So

x− 1 ∈ R and hence 1− x = −(x− 1) ∈ R. Now by 2.3.10, 1− (1− x)y is a

unit in A for all y ∈ A. In particular, for y = 1, we have that 1−(1−x)1 = x

is a unit in A. Since x is a unit in A, therefore x−1 exists in A. Hence xM = 0

implies that x−1xM = 0, that is, M = 0.
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