
Optimizing Memory Latency in Hardware Disaggregated
Memory Systems

Amit Puri, John Jose, Tamarpalli Venkatesh
Indian Institute of Technology Guwahati, Assam, India

Paper Summary
Traditional server that are deployed in data centers face severe memory underutilization
due to inconsistant memory allocation. The memory resources gets stranded within
different servers in the form of small fragments, making them unusable. Hardware memory
disaggregation is a solid alternative of traditional server architecture to overcome its
limitations. It decouples the server’s memory into seperate resource pools connected
through high-speed network interfaces. Server nodes (compute nodes) have a small
amount of local on-chip memory and mostly rely on remote memory from memory pools for
application requirement that can be allocated on-demand, improving its utilization.

Figure 1: (a) Traditional Server Design vs (b) Disaggregated Memory Design

However, presence of network increase the memory access latency at remote
memory pools (or nodes), significantly impacting the system performance. Disaggregated
system require a series of system optimizations to reduce memory cost. Currently, there
are no commercialy available disaggregated memory systems and many of the system
level details are not clear. In our disseration, we work on these research gaps to propose
a practical solution for scalable memory disaggregation. We also propose a unique cost-
effective hot-page migration mechanism to significantly improve the memory access
latency and hence the system performance. We build a scalable disaggregated memory
simulator to evaluate our designs.

Disaggregated Memory System Design

Figure 2: Overview of Disaggregated Memory System

Memory-semantic fabrics like CXL support coherence access to remote memory. The
compute nodes can directly access a cache block in remote memory from on LLC miss
with a latency of around 170ns-250ns. A remote memory controller is an addressable
hardware module similar to DRAM controller, which is connected to on-chip bus and
forwards memory requests belonging to remote memory to the network. A similar memory
controller is present at memory nodes to send response.

Remote Memory Organization

Figure 3: Remote Memory Organization (a) Shared (b) Distributed

Remote memory address space can be organized in multiple ways:
 Shared : Transparent global address space | Easy to spread workload across nodes but

significant coherency traffic | Bottleneck in remote page allocation.
 Distributed : Exclusive access to each node | Lesser coherency traffic | Remory memory

can be allocated in larger chunks | Use another layer of address translation

(a) (b)

(a) (b)

Shared memory space is improtant when workloads did not fit into local memory. Most
data-centric workloads can easily get compute resources with in single node. With memory
being moved to seperate pools on disaggregation, it is better to use distributed approaach.
An address map for allocated remote memory chunks in remote memory controller.

Proposed Pool Selection Policies

Remote Memory Allocation and Pool Selection
 Multiple compute nodes with different memory access patterns and footprints use same

remote memory pools, while global memory manager allocates remote memory to them.
 If memory pool selection is such that the memory requests are not balanced among

memory pools, the network will face congestion and memory pools will face contention in
its queues.

 Random or Round-Robin pool Selection does not distribute memory requests equally
and has large variation in total memory requests among the pools. Due to which it faces
tail latency.

 Smart-Idle Pool Selection : Monitors memory access traffic to each pool before
allocating new chunk. The idle memory pool is selected for memory allocation.

 Uniform-Load Partition : Divide compute nodes into sets with each set having same
memory request rate. Each set is mapped to a memory pool.

Figure 4: Variation in queue allocation (a) Random (b) Round-Robin

(a) (b)

Cont..

Access Generator :
 Generate block level accesses for accessing identified hot pages
 Selects between multiple Page-queues of different nodes, to equally partition bandwidth

Bandwidth Allocation
 Selects between regular block accesses and those belonging to pages for equal

bandiwtdh partition.

Figure 5: Avergae Memory Access Latency (a) Round-Robin (b) Smart-Idle
(c) Uniform-Load Partition | (d) Average Remote Memory Latency

Figure 6: Impact on Tail Latency

Figure 6: Latency Distribution (Local/Network/Remote)

Figure 7: Proposed architecture for Hot-Page migration

Remote memory latency can be reduced by Hot-Page migration from remote to local
memory and using locality of memory accesses in those pages. However, it has multiple
issues:

 Multi-tiered Memory Management makes difficult to track hot-pages
 Page migration require page-table updates and introduces long CPU stalls for TLB-

shootdown (4-13µs based on number of cores)
 Lastly, accessing page consumes memory and network bandwidth and starves the

subsequent block accesses to other pages on their critical path, introducing slow-downs.

Cost Effective Hot-Page Migration (CosMo)

Hot Page Tracker :
 Track hot pages in multi-tiered memory system
 Training based migration thresholds based on Access Count and Reuse Frequency

Figure 8: Hardware Structures (a) Hot-Page Tracker (b) Page Remap Table

(a) (b)

Page Remap Table:
 Stores the new local physical addresses of migrated pages.
 Perform page-table updates in batches.
 Memory access to these pages gets new address from this table.

Trace-based Simulation
 Pintool for instrumentation and multi-core cache modeling.
 Multiple main memory traces collected, one for each node.
 Traces parsed in parallelfor network and remote memory simulation.
 DRAMSim2 for memory simulation.
 Multiple DRAMSim2 instances each for local memory and remote memory units
Network:
 NIC Node: 100Gbps/10ns (De)-Packetization
 Switch: 400Gbps/5ns Processing Delay

(a) (b)

(d)(c)

Figure 9: (a) Access Generator for Page Memory Request (b) Bandiwtdh
Allocation Using Priority Selection

(a) (b)

Mechanism eliminates starvation to subsequent block accesses..!

Methodology and Results

Memory : 1200x2MHz DDR4 DRAM (19.4Gbps)

Switch : 100/400Gbps, 4MB Port buffer, 5/15ns processing/switching

NIC (Nodes) : 40/100Gbps, 1MB buffer, 10/30ns for (De)-Packetization/processing

Figure 9: Cycle-level simulation for Multi-node Simulation with OOO
computing cores

Figure 10: Normalized IPC and Memory Latency in different page migration
schemes compared to CosMo

Figure 11: Normalized IPC, Memory Cost Increase and Local Hit Ratio in
different data movement schemes compared to CosMo

Related Work
Komareddy et al. [1][2] explored memory allocation policies for shared memory approach for
NVM based disaggregated pools. Even though remote memory pages can directly be
allocated and do not actually face the issue of imbalanced memory requests, the coherency is
the bigger issue, which increase the waiting time for memory accesses. Hot page migration
has been explored in DRAM-NVM hybrid memory systems [3][4][5] in the past which have
cnetralized memory management, making it easy to track pages. This does not apply to multi-
tiered disaggregated memory management. Further, the interconnect is not the issue in these
systems. The solutions are not applicable to hardware disaggregation. Page migration have
also been used in the software disaggregated system [6], these systems only allow remote
memory access at page granularity and free memory in other servers to swap out cold pages
rather to slow disk. These design does not translate to hardware disaggregation.

References
[1] Vamsee Reddy Kommareddy, Amro Awad, Clayton Hughes, and Simon David Hammond. 2018. Exploring Allocation Policies in
Disaggregated Non-Volatile Memories. In Proceedings of the MCHPC'18, doi.: 10.1145/3286475.3286480

[2] V. R. Kommareddy, C. Hughes, S. Hammond and A. Awad, "Investigating Fairness in Disaggregated Non-Volatile Memories," 2019
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Miami, FL, USA, 2019, pp. 104-110, doi: 10.1109/ISVLSI.2019.00028.

[3] T. Repantis, C.D. Antonopoulos, V. Kalogeraki, and T.S. Papatheodorou. 2004. Dynamic page migration in software DSM systems.
In 2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935). 494–.doi: 10.1109/CLUSTR.2004.1392659

[4] Yujuan Tan, Baiping Wang, Zhichao Yan, Witawas Srisa-an, Xianzhang Chen, and Duo Liu. 2020. APMigration: Improving
Performance of Hybrid Memory Performance via An Adaptive Page Migration Method. IEEE Transactions on Parallel and Distributed
Systems 31, 2 (2020), 266–278.doi: 10.1109/TPDS.2019.2933521

[5]Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G. Shin. 2017. Efficient Memory Disaggregation with
INFINISWAP. In Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation (Boston, MA, USA)
(NSDI’17). USENIX Association, USA, 649–667.

1 5

2

3

4

6

7

6

8

9

	Slide 1

