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1. Definition and notation for a sequence.

2. Clarification: A list of real numbers a1, a2, . . . , an for any n ∈ N is called a finite sequence of real numbers.
Contrast this with a1 + a2 + · · ·+ an is called a finite sum.

3. Given a sequence (an), there is no concept of the eventual value of (an) – simply because we have not defined a∞.
However, we have some idea of whether the given sequence (an) is or is not getting closer and closer to a fixed
real number a. Denote this by an → a. Let us attempt to give a criterion which should satisfy the conditions:

(a) in every example where we believe an → a, the criterion should be true,

(b) in every example where we believe an ̸→ a the criterion should be false and

(c) there should be no need to modify the criterion in the face of new examples.

4. (a) Take a small real number, say, ϵ1 = 1.
Criterion 1: We say an → a if there exists a natural number N1 such that |an − a| < ϵ1 = 1 for all n ≥ N1.
Note that this criterion demands that all but a finite number of terms of the sequence be within a distance
of 1 from a.
This criterion works in proving: (i) every constant sequence an = a satisfies an → a, (ii) ( 1n) → 0 and even
(iii) (−1)n ̸→ −1, 0, 1. However, consider the sequence bn = b+ 1

2 · (−1)n for all n. We do not believe (bn) is
getting closer and closer to b, but Criterion 1 makes bn → b.

(b) Perhaps ϵ1 = 1 is not small enough. Take ϵ2 =
1
2 .

Criterion 2: We say an → a if there exists a natural number N2 such that |an − a| < ϵ2 =
1
2 for all n ≥ N2.

This criterion works in cases (i)–(iii) listed above. This criterion works in the case of (bn) given above to
show bn ̸→ b. So Criterion 2 is better than Criterion 1. However, consider the sequence cn = c + 1

4 · (−1)n

for all n. We do not believe (cn) is getting closer and closer to c, but Criterion 2 makes cn → c.

(c) Perhaps ϵ2 =
1
2 is not small enough. Take ϵ3 =

1
3 .

Criterion 3: We say an → a if there exists a natural number N3 such that |an − a| < ϵ3 =
1
3 for all n ≥ N3.

This criterion works in all the cases Criteria 1 & 2 work given above. It also works to show cn ̸→ c. However,
consider the sequence dn = d + 1

6 · (−1)n for all n. We do not believe (dn) is getting closer and closer to d,
but Criterion 3 is true here.

(d) Perhaps ϵ3 =
1
3 is not small enough. Take ϵ0 > 0 to be some fixed small real number.

Criterion 0: We say an → a if there exists a natural number N0 such that |an − a| < ϵ0 for all n ≥ N0.
This criterion works in all cases where Criteria 1–3 work, if ϵ0 < 1

3 . Also, one can show (dn) ̸→ d if ϵ0 ≤ 1
6 .

However, consider the sequence an = a + ϵ0
2 · (−1)n for all n. We do not believe (an) is getting closer and

closer to a, but Criterion 0 is true here.

5. Observation: Each of the criteria 0–3 has to be necessarily true in the examples we have of sequences approaching
a real number. Whereas, on the contrary, given any fixed criterion among them, there is an example for a sequence
for which the criterion believes that the sequence approaches a real number – while we do not believe this to be
so. Moreover, varying the value of ϵ0, Criterion 0 is actually a collection of infinitely many criteria.

6. Thus we are faced with a situation where infinitely many criteria are necessary for our notion of a sequence getting
closer and closer to a real number, whereas, no single one of them is sufficient. Cauchy gathered all the conditions
together to capture our notion in the definition below.

7. Cauchy’s definition: We say an → a if (and only if) the following is true:
For any given real ϵ > 0, there exists a natural N such that |an − a| < ϵ for all n ≥ N .

8. Constant sequence, Tail of a sequence

9. We claim the following limits

(a) ( 1n) → 0

(b) ( 1
n2 ) → 0

(c) ( 1
np ) → 0 for each fixed natural p

(d) ( 1
1+nα) → 0 for each fixed real α > 0

(e) (bn) → 0 for every fixed real −1 < b < 1

(f) (c1/n) → 1 for every fixed real c > 0

(g) (n1/n) → 1
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Brief hints: Given any real ϵ > 0, we have 1
ϵ as a real number and there exists a natural number N such that

1
ϵ < N , which implies that for all n > N , we have 1

n < 1
N < ϵ.

1
1+nα < 1

nα

Since 0 < b < 1, we can write b = 1/(1 + a), where a := (1/b) − 1 so that a > 0. By Bernoulli’s Inequality, we
have (1 + a)n > 1 + na. Hence 0 < bn = 1

(1+a)n ≤ 1
1+na < 1

na

10. Prove (−1)n does not converge, i.e., diverges.

11. Prove lim
n→∞

√
n+ 1−

√
n =?

12. Template for applying Cauchy’s definition to prove an → a:

Rough Work Credit worthy work

START: Given a real ϵ > 0 START: Given a real ϵ > 0

DO SOMETHING: ? ? SAY: My N is equal to . . .

FIND: A natural N =? ASSUMING: n ≥ N

DO SOMETHING∗ ? ?

GET FINALLY: |an − a| < ϵ
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1. Uniqueness of limits. If an → a, b, then a = b. Proof: Use the lemma: if a non-negative number is
smaller than every positive number, it has to be zero.

Can you make |a − b| smaller than every positive num-
ber?

2. If two sequences converge to the same real number, are the two sequences ‘equal’? If two sequences converge to
the same real number, do they have to be on ‘different’ sides of the limit?

3. A sequence X = (xn) is bounded if the set {xn|n ∈ N} is bounded or equivalently there exists a real B such that
for every natural n, |xn| ≤ B. Picture.

4. Why can’t one take B = max(x1, x2, x3, . . .)?

5. Proposition: Convergent implies bounded. Proof:

Method 1 Except for finitely many terms, all others clus-
ter around the limit.

Method 2 Can you explain when an ̸→ a?

6. Building new sequences from one given sequence (an):

(a) Constant multiple sequence (c · an) for some real c

(b) Square sequence (a2n)

(c) Cube sequence (a3n)

(d) p–th power sequence (apn) for natural p. The latter
can be extended to include p = 0

(e) To extend this to all integral p, need to assume
none of the an = 0

(f) Similarly get fractional powers under additional as-
sumptions, if necessary

(g) Further, let f : R → R be any polynomial function,
viz., f(x) = ckx

k+ck−1x
k−1+ · · ·+c1x+c0 for real

numbers c0, c1, · · · , ck and natural k. Then (f(an))
is a new sequence

(h) Fundamental question: If an → a, does f(an) →
f(a)?

7. Building new sequences from two given sequences (an) and (bn):

(a) their sum (an + bn)

(b) their difference (an − bn)

(c) product (an · bn) and
(d) quotient (an/bn) [assuming none of the bn is zero]

(e) Proposition: If an → a and bn → b, then an+ bn →
a+ b.

(f) Proposition: If an → a and bn → b, then an− bn →
a− b.

(g) If an → a and bn → b, then an · bn → a · b.
(h) If an → a and bn → b, and none of the bn = 0 and

b ̸= 0, then an
bn

→ a
b .

(i) How about proofs of these propositions?

8. Building new sequences from more than two given sequences.

9. Discussion topic:

(a) Examples for bounded sequences which are not con-
vergent.

(b) Sequences which seem to have two “limit–like”
points? [NOT a formal phrase: don’t use it!]

(c) three limit–like points?

(d) four limit–like points?,. . .

(e) infinitely many?

(f) all rationals as limit–like points?

(g) all irrationals?

(h) all reals???

(i) any given subset of reals?

(j) when is a real number c, a “limit-like” point of a
given sequence an: definition?
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1. Proposition: Suppose an → a and for every natural n, an ≥ 0. Then a ≥ 0.

Picture and Proof: If a < 0, take ϵ = −a > 0 and get a natural N from the definition such that for all n ≥ N ,
we have a − ϵ < an < a + ϵ. In particular for n = N , we get a − (−a) < aN < a + (−a) = 0 contradicting the
hypothesis that aN ≥ 0.
Question: If an → a and for every natural n, an > 0, then is a > 0? If an ≥ c for every n, then is a ≥ c? Similar
questions with ≤, etc..

2. Proposition: Suppose an → a and bn → b with an ≤ bn for every n. Then, a ≤ b.

Picture and Proof: Apply previous proposition to the difference of given sequences.

3. Proposition: Suppose an → a and α ≤ an ≤ β. Then α ≤ a ≤ β.

Picture and Proof: Apply previous proposition to the constant sequence bn = β, etc..

4. Squeeze/Sandwich/Pinching Theorem: For three sequences, an ≤ bn ≤ cn with an → l and cn → l. Then the
sequence bn converges and the limit is l.

Picture and Proof: Given a real ϵ > 0, find a natural N such that for every n ≥ N , both |an − a|, |bn − b| < ϵ.
Then, −ϵ < an − a ≤ bn − a ≤ cn − a < ϵ for all n ≥ N . This proves the required.

5. Nested interval property: Let for each natural n, In be an interval of real numbers, viz., In = [an, bn] for some
real numbers an ≤ bn. Of course, each such interval is non-empty and bounded. If I1 ⊃ I2 ⊃ I3 ⊃ · · · and width
of In = bn − an → 0, then ∩∞

1 In is a set with exactly one real number.

Is this property true for rational numbers?

6. Increasing, decreasing and monotone sequences. Additional qualifier: ‘strictly’

7. Every increasing sequence is bounded below. There are examples of increasing sequences which are not bounded
above. Analogous statements for decreasing sequences.

8. Whereas boundedness for a general sequence does not imply convergence, it does for the restricted class of monotone
sequences.

9. Monotone Convergence Theorem: An increasing sequence which is bounded above converges to the supremum of
the set formed by the sequence.

Picture and Proof: Let s be the supremum. Given any real ϵ > 0, recall s − ϵ is not an upper-bound of the
sequence and hence there is a natural N such that s − ϵ < aN . What can you say about an for n ≥ N? Where
are they??

Analogous statement for decreasing sequences and a proof.

10. Given any strictly increasing sequence of naturals n1 < n2 < n3 < · · · , and a sequence of real numbers (an), the
sequence (ank

) is called a subsequence of the given sequence (an).

Examples

11. Proposition: If a sequence an → a, then every subsequence ank
→ a.

Contrapositive gives a divergence criterion.

12. Bolzano–Weierstrass Theorem: A bounded sequence of real numbers has a convergent subsequence.

Picture and Proof: Let I1 = [inf S, supS], where S = {an|n ∈ N}, is the set of terms of the sequence.

Set L2 = [inf S, 12(inf S+supS)] and R2 = [12(inf S+supS), supS]. Let A2 = {n|an ∈ L2} and B2 = {n|an ∈ R2}.
At least one of A2 or B2 is infinite and if A2 is infinite, set I2 = L2 and if not, set I2 = R2.

Continue ... and apply nested interval property


