Lec. 10 of 21/Pg. 14 of 28

- 1. Alternating Series Test: If (z_n) is monotonically decreasing sequence of non-negatives converging to zero, the series $\sum (-1)^{n+1} z_n$ converges. Proof is analogous to the example of alternating harmonic series. One just observes that the even subsequence of partial sums s_{2n} is monotonically increasing and the odd subsequence of partial sums s_{2n+1} is monotonically decreasing. Further $0 \le s_{2n} \le s_{2n} + z_{2n+1} = s_{2n+1} \le z_1$. This makes the two subsequences bounded and hence convergent. Using $z_{2n+1} \to 0$ and squeeze theorem they converge to the same value. Using this establish that the alternating series converges.
- 2. Comparison test for non-negative series. Similar one for negative series. Statement: Let $0 \le x_n \le y_n$ for $n \ge K$, some natural. Then (i) $\sum y_n$ converges implies $\sum x_n$ converges. Also, (ii) $\sum x_n$ diverges implies $\sum y_n$ diverges. How about if $\sum x_n$ converges or $\sum y_n$ diverges? Further, in above comparison test, do we need $0 \le x_n$? Will the test be true if this condition is dropped?
- 3. Limit comparison test: (x_n) and (y_n) are positive sequences and r = lim x_n/y_n exists. Then:
 (i) If r ≠ 0, ∑x_n is convergent if and only if ∑y_n is convergent. Proof: Take ε = 1/2 r. There exists a natural K such that n ≥ K implies |x_n/y_n - r| < 1/2 r, i.e., 1/2 r < x_n/y_n < 3/2 r whence (1/2 r)y_n < x_n < (3/2 r)y_n. Now apply comparison test.
 (ii) If r = 0, and ∑y_n is convergent then ∑x_n is convergent. Proof: Take ε = 1. There exists a natural K such that n ≥ K implies -1 < 0 < x_n/y_n < 1 whence 0 < x_n < y_n. Now apply comparison test.
- 4. Examples: $\sum \frac{1}{n^2+n+1}$ by comparison with $\sum \frac{1}{n^2}$. Limit comparison of $\sum \frac{1}{n^2-n+1}$ with $\sum \frac{1}{n^2}$. Limit comparison of $\sum \frac{1}{\sqrt[3]{n+9}}$ with $\sum \frac{1}{\sqrt[3]{n}}$
- 5. Value Root Test: Let (a_n) be a sequence of reals. Suppose for some real r, $|a_n|^{\frac{1}{n}} \leq r$ for all $n \geq K$ for some natural K. If r < 1, the series $\sum a_n$ (and $\sum |a_n|$) are convergent. For a proof, compare with geometric series. Suppose $|a_n|^{\frac{1}{n}} \geq 1$ for all $n \geq K$ for some natural K. Then the series $\sum a_n$ (and $\sum |a_n|$) are divergent. For a proof, use n-th term test.
- 6. Limit Root Test: Suppose (a_n) be a sequence of reals such that $r = \lim |a_n|^{\frac{1}{n}}$ exists. If r < 1, then $\sum a_n$ (and $\sum |a_n|$) are convergent. If r > 1, then $\sum a_n$ (and $\sum |a_n|$) are divergent.
- 7. Value Ratio Test: Let (a_n) be a sequence of non-zero reals. Suppose that for some real r, $\left|\frac{a_{n+1}}{a_n}\right| \leq r$ for all $n \geq K$ for some natural K. If r < 1, the series $\sum a_n$ (and $\sum |a_n|$) are convergent. For a proof, compare with geometric series. Suppose $\left|\frac{a_{n+1}}{a_n}\right| \geq 1$ for all $n \geq K$ for some natural K. Then, the series $\sum a_n$ (and $\sum |a_n|$) are divergent. For a proof, use n-th term test.
- 8. Limit Ratio Test: Suppose that (a_n) is a sequence of non-zero reals such that $r = \lim \left| \frac{a_{n+1}}{a_n} \right|$ exists. If r < 1, then $\sum a_n$ (and $\sum |a_n|$) are convergent. If r > 1, then $\sum a_n$ (and $\sum |a_n|$) are divergent.