- 1. Alternating Series Test: If (z_n) is monotonically decreasing sequence of non-negatives converging to zero, the series $\sum (-1)^{n+1}z_n$ converges. Proof is analogous to the example of alternating harmonic series. One just observes that the even subsequence of partial sums s_{2n} is monotonically increasing and the odd subsequence of partial sums s_{2n+1} is monotonically decreasing. Further $0 \leq s_{2n} \leq s_{2n} + z_{2n+1} = s_{2n+1} \leq z_1$. This makes the two subsequences bounded and hence convergent. Using $z_{2n+1} \to 0$ and squeeze theorem they converge to the same value. Using this establish that the alternating series converges.
- 2. Comparison test for non–negative series. Similar one for negative series. Statement: Let $0 \le x_n \le y_n$ for $n \ge K$, some natural. Then (i) $\sum y_n$ converges implies $\sum x_n$ converges. Also, (ii) $\sum x_n$ diverges implies $\sum y_n$ diverges. How about if $\sum x_n$ converges or $\sum y_n$ diverges? Further, in above comparison test, do we need $0 \leq x_n$? Will the test be true if this condition is dropped?
- 3. Limit comparison test: (x_n) and (y_n) are positive sequences and $r = \lim \frac{x_n}{y_n}$ exists. Then: (i) If $r \neq 0$, $\sum x_n$ is convergent if and only if $\sum y_n$ is convergent. Proof: Take $\epsilon = \frac{1}{2}$ $\frac{1}{2}r$. There exists a natural K such that $n \geq K$ implies $\left|\frac{x_n}{y_n}\right|$ $\frac{x_n}{y_n}-r|<\frac{1}{2}$ $\frac{1}{2}r$, i.e., $\frac{1}{2}r < \frac{x_n}{y_n} < \frac{3}{2}$ $\frac{3}{2}r$ whence $\left(\frac{1}{2}\right)$ $(\frac{1}{2}r)y_n < x_n < (\frac{3}{2})$ $\frac{3}{2}r$)y_n. Now apply comparison test. (ii) If $r = 0$, and $\sum y_n$ is convergent then $\sum x_n$ is convergent. Proof: Take $\epsilon = 1$. There exists a natural K such that $n \geq K$ implies $-1 < 0 < \frac{x_n}{n}$ $\frac{x_n}{y_n}$ < 1 whence $0 < x_n < y_n$. Now apply comparison test.
- 4. Examples: $\sum_{n=1}^{\infty} \frac{1}{n^2+n+1}$ by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Limit $\sum_{n=1}^{\infty} \frac{1}{n^2}$ if $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Limit comparison of $\sum \frac{1}{\sqrt[3]{n+9}}$ with $\sum \frac{1}{\sqrt[3]{n}}$
- 5. Value Root Test: Let (a_n) be a sequence of reals. Suppose for some real r, $|a_n|^{\frac{1}{n}} \leq r$ for all $n \geq K$ for some natural K. If $r < 1$, the series $\sum a_n$ (and $\sum |a_n|$) are convergent. For a proof, compare with geometric series. Suppose $|a_n|^{\frac{1}{n}} \geq 1$ for all $n \geq K$ for some natural K. Then the series $\sum a_n$ (and $\sum |a_n|$) are divergent. For a proof, use n -th term test.
- 6. Limit Root Test: Suppose (a_n) be a sequence of reals such that $r = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$ exists. If $r < 1$, then $\sum a_n$ (and $\sum |a_n|$) are convergent. If $r > 1$, then $\sum a_n$ (and $\sum |a_n|$) are divergent.
- 7. Value Ratio Test: Let (a_n) be a sequence of non-zero reals. Suppose that for some real r , $\Big|$ a_{n+1} $\overline{a_n}$ $\vert \leq r$ for all $n \geq K$ for some natural K. If $r < 1$, the series $\sum a_n$ (and $\sum |a_n|$) are convergent. For a proof, compare with geometric series. Suppose a_{n+1} $\overline{a_n}$ $\vert \geq 1$ for all $n \geq K$ for some natural K. Then, the series $\sum a_n$ (and $\sum |a_n|$) are divergent. For a proof, use n –th term test.
- 8. Limit Ratio Test: Suppose that (a_n) is a sequence of non–zero reals such that $r = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{n=1}^{\infty} \frac{1}{n} \right)$ a_{n+1} a_n exists. If $r < 1$, then $\sum a_n$ (and $\sum |a_n|$) are convergent. If $r > 1$, then $\sum a_n$ (and $\sum |a_n|$) are divergent.