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1. Alternating Series Test: If (zn) is monotonically decreasing sequence of non–negatives converging to zero, the
series

∑
(−1)n+1zn converges. Proof is analogous to the example of alternating harmonic series. One just observes

that the even subsequence of partial sums s2n is monotonically increasing and the odd subsequence of partial sums
s2n+1 is monotonically decreasing. Further 0 ≤ s2n ≤ s2n+ z2n+1 = s2n+1 ≤ z1. This makes the two subsequences
bounded and hence convergent. Using z2n+1 → 0 and squeeze theorem they converge to the same value. Using
this establish that the alternating series converges.

2. Comparison test for non–negative series. Similar one for negative series. Statement:
Let 0 ≤ xn ≤ yn for n ≥ K, some natural. Then (i)

∑
yn converges implies

∑
xn converges. Also, (ii)

∑
xn

diverges implies
∑

yn diverges.
How about if

∑
xn converges or

∑
yn diverges? Further, in above comparison test, do we need 0 ≤ xn? Will the

test be true if this condition is dropped?

3. Limit comparison test: (xn) and (yn) are positive sequences and r = lim xn
yn

exists. Then:
(i) If r ̸= 0,

∑
xn is convergent if and only if

∑
yn is convergent.

Proof: Take ϵ = 1
2r. There exists a natural K such that n ≥ K implies |xn

yn
− r| < 1

2r, i.e.,
1
2r < xn

yn
< 3

2r whence

(12r)yn < xn < (32r)yn. Now apply comparison test.
(ii) If r = 0, and

∑
yn is convergent then

∑
xn is convergent.

Proof: Take ϵ = 1. There exists a natural K such that n ≥ K implies −1 < 0 < xn
yn

< 1 whence 0 < xn < yn.
Now apply comparison test.

4. Examples:
∑ 1

n2+n+1
by comparison with

∑ 1
n2 . Limit comparison of

∑ 1
n2−n+1

with
∑ 1

n2 . Limit comparison of∑ 1
3√n+9

with
∑ 1

3√n

5. Value Root Test: Let (an) be a sequence of reals.

Suppose for some real r, |an|
1
n ≤ r for all n ≥ K for some natural K. If r < 1, the series

∑
an (and

∑
|an|) are

convergent. For a proof, compare with geometric series.
Suppose |an|

1
n ≥ 1 for all n ≥ K for some natural K. Then the series

∑
an (and

∑
|an|) are divergent. For a

proof, use n–th term test.

6. Limit Root Test: Suppose (an) be a sequence of reals such that r = lim |an|
1
n exists.

If r < 1, then
∑

an (and
∑

|an|) are convergent.
If r > 1, then

∑
an (and

∑
|an|) are divergent.

7. Value Ratio Test: Let (an) be a sequence of non–zero reals.

Suppose that for some real r,
∣∣∣an+1

an

∣∣∣ ≤ r for all n ≥ K for some natural K. If r < 1, the series
∑

an (and
∑

|an|)
are convergent. For a proof, compare with geometric series.

Suppose
∣∣∣an+1

an

∣∣∣ ≥ 1 for all n ≥ K for some natural K. Then, the series
∑

an (and
∑

|an|) are divergent. For a

proof, use n–th term test.

8. Limit Ratio Test: Suppose that (an) is a sequence of non–zero reals such that r = lim
∣∣∣an+1

an

∣∣∣ exists.
If r < 1, then

∑
an (and

∑
|an|) are convergent.

If r > 1, then
∑

an (and
∑

|an|) are divergent.


