My principle area of interest is Computational methods for Incompressible flows and turbulent flows.
Here is a brief review of the topics that I am currently working on
1. Immersed boundary method : Flows in complex geometries are difficult to solve. They bring in issues that are otherwise nonexistent. Use of Cartesian mesh for all problems is not only an advantage, but perhaps it opens up opportunities to compute flows which are otherwise prohibitively difficult. In particular applying this method in complex 3D flows or high-Re flows are challenges that lie ahead of us. Conventinal sharp interface immersed boundary method suffers frrom sppuruss oscillation in aerodynamic force coefficients owing to velocity pressure discontinuity. The diffuse interface IBM, by treating the interface as fluid-fluid one reduces the SFOs significantly. This greatly enhances its ability to handle complex FSI problems. Some simulated cases are shown here.
Instantaneous streakline visualization of the wake that forms behind a large-aspect ratio pitching plate at Re=1000
Instantaneous visualization of periodic side-by-side fluttering of a thin plate
Instantaous vortical structure behind an inclined cylinder at indicated Reynolds numbers
Swimming of a simplified insect at Re=500, two instances are shown
Turbulent flow past a wavy cylinder at Re=3900, spanwise vorticity surfaces
2. Rayleigh-Benard Convection : Themo-convective instability in a bottom heated configuration is one of the fundamental topic in turbulent convection. Large-scale motion, Ra-number scaling and sustenance of turbulence via production due to buoyancy are especially a few attractive features. Currently we are aiming to see the effect of rotation on the turbulent convection in a cylindrical cell. Also work is in progress for turbulent structures and mean flow circulation in rectangular box both in 2D and 3D regimes.
Temperature visualization for stationary RBF for Ra=109 for 2D and 3D simulations, three horizontal frames showing "network" near the walls and homogeneous mixture in the bulk
3. Cellular and oblique vortex shedding behind a cicular cylinder: If the incoming left-to-right flow is tricked with spanwise shear, vortex shedding behind a circular cylinder exhibits a new pattern known as cellular shedding which occurs at an angle to the cylinder axis. This configuration results in variable shedding frequency along the spanwise direction with finite jumps at the cell boundaries.
Spanwise vorticity at an instance for plain shear (left) and spanwise shear (right)
Vortex shedding along the spanwise direction differs owing to a varying local Reynolds number. With a larger shear rate while at one end flow shows signs of laminar-turbulent transition, it is a steady twin vortex situation at the other. Late 3D transtion and often quasi-2D flow can be detected from particle visualization shown below
Instantaneous streak for plain shear (left) and spanwise shear (right)