 

| Lecture 1: | 9.00 AM to 10.30 AM | Solution of Linear and Non-linear Equations | 
| Lecture 2: | 10.45 AM to 12.15 PM | Solution of Ordinary Differential Equations | 
| Lecture 3: | 12.30 PM to 2.00 PM | Numerical Differentiation and Integration | 
| 2.30 PM to 5.30 PM | Hands-On session for topics covered in the forenoon session | 
| Lecture 1 | 9.00 AM to 10.30 AM | Linear and Non-linear Regression | 
| Lecture 2 | 10.45 AM to 12.15 PM | Splines and Polynomial fitting | 
| Lecture 3 | 12.30 PM to 2.00 PM | Introduction to Optimization | 
| 2.30 PM to 5.30 PM | Hands-On session for topics covered in the forenoon session | 
| Lecture 1 | 9.00 AM to 10.30 AM | Sanitized Teaching Learning Based Optimization | 
| Lecture 2 | 10.45 AM to 12.15 PM | Genetic Algorithm | 
| Lecture 3 | 12.30 PM to 2.00 PM | Particle Swarm Optimization and Differential Evolution | 
| 2.30 PM to 5.30 PM | Hands-On session for topics covered in the forenoon session | 
| Lecture 1 | 9.00 AM to 10.30 AM | Case Study 1: Production Planning | 
| Lecture 2 | 10.45 AM to 12.15 PM | Case Study 2: Job Shop Scheduling | 
| Lecture 3 | 12.30 PM to 2.00 PM | Benchmarking of Algorithms | 
| 2.30 PM to 5.30 PM | Hands-On session for topics covered in the forenoon session | 
| Lecture 1 | 9.00 AM to 10.30 AM | Introduction to Multi-Objective Optimization | 
| Lecture 2 | 10.45 AM to 12.15 PM | Non-Dominated Sorting and Crowding Distance | 
| Lecture 3 | 12.30 PM to 2.00 PM | Pedagogy Session | 
| 2.30 PM to 5.30 PM | Hands-on Session on Multi-Objective Optimziation |