Pre-requisite: ME 602/ MA 573 or equivalent
Brief review of the governing equations in fluid dynamics; Compact and explicit convection schemes; Linear iterative solver – introduction to Conjugate Gradient method, Geometric multigrid technique; Structured Grid generation - algebraic methods, elliptic techniques; Finite difference technique - Convection-diffusion equation, Projection method, coordinate transformation. Finite volume method - integral approximations, flows in simple and complex geometries, introduction to unstructured grid computations; Parallel computations - Need for vectorization, domain decomposition technique, MPI libraries; Introduction to Turbulent flow computations – ideas behind Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) and turbulence modeling.
Textbooks:
[1] J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002.
[2] J. C. Tannehill, D. A. Anderson and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Taylor & Francis, 1997.
References:
[1] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, 2000.
[2] J. D. Anderson Jr, Computational Fluid Dynamics, McGraw-Hill International Edition, 1995.
[3] K.Muralidhar and T. Sundararajan, Computational Fluid Flow and Heat Transfer, Narosa Publishing House, 1995.
[4] S. B. Pope, Turbulent Flows, Cambridge University Press, 2000.[1] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, 2000.
[5] Pierre Sagaut, Large Eddy Simulation for Incompressible Flows, Springer, 1998.
[6] Tapan K. Sengupta, Fundamentals of Computational Fluid Dynamics, Universities Press, 2004.
J. H. Ferziger, NumericalMethods for Engineering Application, John Wiley & Sons,1998