Lab Icon BIO PROCESS ANALYTICAL TECHNOLOGY LABORATORY
publi-bar-image

Journal Publications

2024

65. Nehru, G., Balakrishnan, R., Swaminathan, N., Tadi, S.R.R. and Sivaprakasam, S., 2024. Heparosan biosynthesis in recombinant Bacillus megaterium: Influence of N‐acetylglucosamine supplementation and kinetic modeling. Biotechnology and Applied Biochemistry. [2024] [3.2]. https://doi.org/10.1002/bab.2634 [2024] [3.2].
64. Mukherjee, P., Pal, S. and Sivaprakasam, S., 2024. Optimization of D-lactic acid biosynthesis from diverse carbon sources in mutant Lactobacillus delbrueckii subsp. bulgaricus via random mutagenesis.Lactobacillus delbrueckii subsp. bulgaricus via random mutagenesis. Systems Microbiology and Biomanufacturing. https://doi.org/10.1007/s43393-024-00316-1 [2024] [4.3].
63. Allampalli, P., Solanki, S. and Sivaprakasam, S., 2024. Metabolic heat based specific growth rate estimators: Does the choice of estimation model influence the state of bioprocesses?. Journal of Bioscience and Bioengineering. https://doi.org/10.1016/j.jbiosc.2024.05.014 [2024] [2.3].
62. Allampalli, S.S.P. and Sivaprakasam, S., 2024. Unveiling the potential of specific growth rate control in fed-batch fermentation: bridging the gap between product quantity and quality. World Journal of Microbiology and Biotechnology. https://doi.org/10.1007/s11274-024-03993-1 [2024] [4.3].
61. SRR Tadi, S Mukherjee, S Sekhar, A Ramesh, S Sivaprakasam. Valorization and kinetic modeling of pediocin production from agro and dairy industrial residues by Pediococcus pentosaceus CRAS1. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-023-02257-7 [2024] [3.1].
60. Patel, A., Goswami, S., Hazarika, G., Sivaprakasam, S., Bhattacharjee, S. and Manna, D., 2024. Sulfonium‐Cross‐Linked Hyaluronic Acid‐Based Self‐Healing Hydrogel: Stimuli‐Responsive Drug Carrier with Inherent Antibacterial Activity to Counteract Antibiotic‐Resistant Bacteria. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202302790 [2024] [10].
59. SSP Allampalli, S Sekhar, Sivaprakasam, S. Enhanced production of human interferon α2b in glycoengineered Pichia pastoris by robust control of methanol feeding and implications of various control strategies. Biochemical Engineering Journal. https://doi.org/10.1016/j.bej.2023.109152 [2024] [3.7].

2023

58. Allampalli, S.S.P., Sekhar, S. and Sivaprakasam, S., 2024. Enhanced production of human interferon α2b in glycoengineered Pichia pastoris by robust control of methanol feeding and implications of various control strategies. Biochemical Engineering. https://doi.org/10.1016/j.bej.2023.109152 [2023] [3.7].
57. Mukherjee, P., Raj, N. and Sivaprakasam, S., 2023. Harnessing valorization potential of whey permeate for D-lactic acid production using lactic acid bacteria. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-05038-3 [2023] [3.7].

2022

56. Allampalli, P., Rathinavelu, S., Mohan, N. and Sivaprakasam, S., 2022. Deployment of metabolic heat rate based soft sensor for estimation and control of specific growth rate in glycoengineered Pichia pastoris for human interferon alpha 2b production. Journal of Biotechnology. https://doi.org/10.1016/j.jbiotec.2022.10.006 [2022] [4.1].
55. Swaminathan, N., Priyanka, P., Rathore, A. S., Sivaprakasam, S., & Subbiah, S. 2022. Cole-Cole modeling of real-time capacitance data for estimation of cell physiological properties in recombinant Escherichia coli cultivation. Biotechnology and Bioengineering. https://doi.org/10.1002/bit.28028 [2022] [3.5].
54. Tadi, S.R.R., Nehru, G., Allampalli, S.S.P. and Sivaprakasam, S., 2022. Engineering precursor and co-factor supply to enhance D-pantothenic acid production in Bacillus megaterium. Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-022-02701-3 [2022] [3.3].
53. Tadi, S. R. R., Nehru, G., Limaye, A. M., & Sivaprakasam, S. 2022. High-level expression and optimization of pantoate-β-alanine ligase in Bacillus megaterium for the enhanced biocatalytic production of D-pantothenic acid. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-021-05093-6 [2022] [3.7].
52. Mohan, N., Pavan, S.S., Jayakumar, A., Rathinavelu, S. and Sivaprakasam, S., 2022. Real-time metabolic heat-based specific growth rate soft sensor for monitoring and control of high molecular weight hyaluronic acid production by Streptococcus zooepidemicus. Applied Microbial and Biotechnology. https://doi.org/10.1007/s00253-022-11760-1 [2022] [4.9].
51. Tadi, S. R. R., Nehru, G., & Sivaprakasam, S. 2022 One-Pot Biosynthesis of 3-Aminopropionic Acid from Fumaric Acid Using Recombinant Bacillus megaterium Containing a Linear Dual-Enzyme Cascade. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-021-03783-7 [2022] [2.9].

2021

47. Tadi, S.R.R., Nehru, G. and Sivaprakasam, S., 2021. Combinatorial approach for improved production of whole-cell 3-aminopropionic acid in recombinant Bacillus megaterium: codon optimization, gene duplication and process optimization. 3 Biotech, 11, 333. https://doi.org/10.1007/s13205-021-02885-7 [2021] [2.9].
46. Gali, K.K., Soundararajan, N., Katiyar, V. and Sivaprakasam, S., 2021. Electrospun chitosan coated polylactic acid nanofiber: a novel immobilization matrix for α–amylase and its application in hydrolysis of cassava fibrous waste. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2021.05.001 [2021] [6.2].
45. Patra, C., Suganya, E., Sivaprakasam, S., Krishnamoorthy, G. and Narayanasamy, S., 2021. A detailed insight on fabricated porous chitosan in eliminating synthetic anionic dyes from single and multi-adsorptive systems with related studies. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.130706 [2021] [8.1].
44. Gali, K.K., Tadi, S.R.R., Arun, E.V.R., Mohan, N., Swaminathan, N., Katiyar, V. and Sivaprakasam, S., 2021. Cost-effective valorization of cassava fibrous waste into enantiomerically pure D-lactic acid: Process engineering and kinetic modelling approach. Environmental Technology and Innovation, 22, 101519. https://doi.org/10.1016/j.eti.2021.101519 [2021] [6.7].
43. Tadi, S.R.R., Nehru, G., Limaye, A.M. and Sivaprakasam, S., 2022. High-level expression and optimization of pantoate-β-alanine ligase in Bacillus megaterium for the enhanced biocatalytic production of D-pantothenic acid. Journal of Food Science and Technology, 1–10. https://doi.org/10.1007/s13197-021-05093-6 [2021] [3.7].
42. Tadi, S.R.R., Ravindran, S.D., Balakrishnan, R. and Sivaprakasam, S., 2021. Recombinant production of poly-(3-hydroxybutyrate) by Bacillus megaterium utilizing millet bran and rapeseed meal hydrolysates. Bioresource Technology. https://doi.org/10.1016/j.biortech.2021.124800 [2021] [9.7].
41. Nehru, G., Tadi, S.R.R. & Sivaprakasam, S. 2021, 'Application of dual promoter expression system for the enhanced heparosan production in Bacillus megaterium', Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-021-03541-9 [2021] [2.9].
40. Sharma, A., Mukherjee, S., Reddy Tadi, S. R., Ramesh, A., & Sivaprakasam, S. Kinetics of growth, plantaricin and lactic acid production in whey permeate based medium by probiotic Lactobacillus plantarum CRAS2. LWT, 139, 110744. https://doi.org/10.1016/j.lwt.2020.110744 [2021] [4.952].
39. Vishnu Priyan, V., Shahnat, T., Suganya, E., Sivaprakasam, S., & Narayanasamy, S. Ecotoxicological assessment of micropollutant Diclofenac absorption on magnetic sawdust: Phyto, Microbial and Fish toxicity studies. Journal of Hazardous Materials, 403, 123532. https://doi.org/10.1016/j.jhazmat.2020.123532 [2021] [10.588].
38. Gali, K. K., Murugesan, M., Tadi, S. R. R., Mohan, N., Swaminathan, N., Katiyar, V., & Sivaprakasam, S. Bioprocessing of cassava fibrous waste as a precursor for stereospecific lactic acid production: Inhibition index and value addition and sustainable utilization. Biomass Conversion and Biorefinery, 1–11. https://doi.org/10.1007/s13399-020-01272-1 [2021] [4.987].
37. Patel, A., Dey, S., Shokeen, K., Rathore, S. K., Sivaprakasam, S., & Manna, D. Sulfonium-based liposome-encapsulated antibiotics deliver a synergistic antibacterial activity. RSC Medicinal Chemistry, 12. https://doi.org/10.1039/D1MD00009H [2021] [3.355].

2020

36. Swaminathan, N., Priyanka, P., Rathore, A. S., Sivaprakasam, S., & Subbiah, S. Multiobjective Optimization for Enhanced Production of Therapeutic Proteins in Escherichia coli: Application of Real-Time Dielectric Spectroscopy. Industrial and Engineering Chemistry Research, 59(50), 21841–21853. https://doi.org/10.1021/acs.iecr.0c04100 [2020] [6.064].
35. Nehru, G., Tadi, S. R. R., Limaye, A. M., & Sivaprakasam, S. Production and characterization of low molecular weight heparosan in Bacillus megaterium using Escherichia coli K5 glycosyltransferases. International Journal of Biological Macromolecules, 160, 69–76. https://doi.org/10.1016/j.ijbiomac.2020.05.159 [2020] [5.953].
34. Suganya, E., Saranya, N., Sivaprakasam, S., Varghese, L. A., & Narayanasamy, S. Experimentation on raw and phosphoric acid-activated Eucalyptus camaldulensis seeds as novel biosorbents for hexavalent chromium removal from simulated and electroplating effluents. Environmental Technology and Innovation, 19, 100977. https://doi.org/10.1016/j.eti.2020.100977 [2020] [5.263].
33. N, S., E. S., Narayanasamy, S., Sivaprakasam, S., Sivasubramanian, V., Pandian, S., & Selvaraj, R. 3-level Box–Behnken optimization of hexavalent chromium reduction by chromate-resistant Trichoderma asperellum cells from simulated and industrial effluent. Environmental Technology and Innovation, 19, 101024. https://doi.org/10.1016/j.eti.2020.101024 [2020] [5.263].
32. Katla, Srikanth, Pavan, S. S., Mohan, N., & Sivaprakasam, S. Biocalorimetric monitoring of glycogen-engineered P. pastoris cultivation for the production of recombinant hNuPlA2: A quantitative study based on mixed feeding strategies. Biotechnology Progress, 36(3), e2971. https://doi.org/10.1002/btpr.2971 [2020] [2.681].
31. Balakrishnan, R., Tadi, S. R. R., Rajaram, S. K., Mohan, N., & Sivaprakasam, S. Batch and fed-batch fermentation of optically pure D(-)-lactic acid from Kodo millet (Paspalum scrobiculatum) residue hydrolysate: growth and inhibition kinetic modeling. Preparative Biochemistry and Biotechnology, 50(4), 365–378. https://doi.org/10.1080/10826068.2019.1697934 [2020] [2.162].
30. Mohan, N., Tadi, S. R. R., Pavan, S. S., & Sivaprakasam, S. Deciphering the role of dissolved oxygen and N-acetyl glucosamine during hyaluronic acid production by Streptococcus zooepidemicus cell factory. Applied Microbiology and Biotechnology, 104(8), 3349–3365. https://doi.org/10.1007/s00253-020-10445-x [2020] [4.813].
29. Balakrishnan, R., Tadi, S. R. R., Pavan, S. S., Mohan, N., & Sivaprakasam, S. Effect of different glucose sources and neutralizing agents on D-lactic acid production from Kodo millet bran hydrolysate: comparative study and kinetic analysis. Journal of Food Science and Technology, 57(3), 915–926. https://doi.org/10.1007/s13197-019-04124-7 [2020] [3.7].

2019

28. Mohan, N., Pavan, S. S., Achar, A., Swaminathan, N., & Sivaprakasam, S. Calorespirometric investigation of Streptococcus zooepidemicus metabolism: Thermodynamics of anabolic payload contribution by growth and hyaluronic acid synthesis. Biochemical Engineering Journal, 152, 107367. https://doi.org/10.1016/j.bej.2019.107367 [2019] [3.978].
27. Katla, Srikanth, Mohan, N., Pavan, S. S., Pal, U., & Sivaprakasam, S. Control of specific growth rate for the enhanced production of human interferon α2b in glycogen-engineered Pichia pastoris: process analytical technology guided approach. Journal of Chemical Technology and Biotechnology, 94(10), 3111–3123. https://doi.org/10.1002/jctb.6118 [2019] [3.474].
26. Katla, Srikanth, Yoganand, K. N. R., Hingane, S., Ranjith Kumar, C. T., Anand, B., & Sivaprakasam, S. Novel glycosylated human interferon alpha 2b expressed in glycogen-engineered Pichia pastoris and its biological activity: N-linked glycoengineering approach. Enzyme and Microbial Technology, 129, 49–58. https://doi.org/10.1016/j.enzmictec.2019.05.007 [2019] [3.493].
25. Palanikumar, I., Katla, S., Tahara, N., Yui, M., Zhang, R., Ebihara, A., & Sivaprakasam, S. Heterologous expression, purification, and functional characterization of recombinant ovine angiotensinogen in the methylotrophic yeast Pichia pastoris. Biotechnology Progress, 35(5), e2866. https://doi.org/10.1002/btpr.2866 [2019] [2.681].
24. Vishan, I., Saha, B., Sivaprakasam, S., & Kalamdah, A. Evaluation of Cd(II) biosorption in aqueous solution by using lyophilized biomass of novel bacterial strain Bacillus badus AK: Biosorption kinetics, thermodynamics and mechanism. Environmental Technology and Innovation, 14, 100323. https://doi.org/10.1016/j.eti.2019.100323 [2019] [5.263].
23. Katla, S., Karmakar, B., Tadi, S. R. R., Mohan, N., Anand, B., Pal, U., & Sivaprakasam, S. High level extracellular production of recombinant human interferon alpha 2b in glycogen-engineered Pichia pastoris: culture medium optimization, high cell density cultivation and biological characterization. Journal of Applied Microbiology, 126(5), 1438–1453. https://doi.org/10.1111/jam.14227 [2019] [3.772].

2018

22. Rohit, S. G., Jyoti, P. K., Subbi, R. T. R., Naresh, M. & Senthilkumar, S. Kinetic modeling of hyaluronic acid production in palmyra palm (Borassus flabellifer) based medium by Streptococcus zooepidemicus MTCC 3523. Biochemical Engineering Journal, 137, 284–293. https://doi.org/10.1016/j.bej.2018.06.01 [2018] [3.978].
21. Balakrishnan, R., Reddy Tadi, S. R., Sivaprakasam, S., & Rajaram, S. Optimization of acid and enzymatic hydrolysis of kodo millet (Paspalum scrobiculatum) bran residue to obtain fermentable sugars for the production of optically pure D(-) lactic acid. Industrial Crops and Products, 111, 731–742. https://doi.org/10.1016/j.indcrop.2017.11.041 [2018] [5.645].

2017

20. Reddy Tadi, S. R., Arun, E. V. R., Limaye, A. M., & Sivaprakasam, S. Enhanced production of optically pure D(-) lactic acid from nutritionally rich Borassus flabellifer sugar and whey protein hydrolysate based–fermentation medium. Biotechnology and Applied Biochemistry, 64(2), 279–289. https://doi.org/10.1002/bab.1470 [2017] [2.431].
19. Vishan, I., Sivaprakasam, S., & Kalamdah, A. Biosorption of lead using Bacillus badius AK strain isolated from compost of green waste (water hyacinth). Environmental Technology (United Kingdom), 38(13–14), 1812–1822. https://doi.org/10.1080/09593330.2017.1298674 [2017] [3.247].
18. Vishan, I., Sivaprakasam, S., & Kalamdah, A. Isolation and identification of bacteria from rotary drum compost of water hyacinth. International Journal of Recycling of Organic Waste in Agriculture, 6(3), 245–253. https://doi.org/10.1007/s40093-017-0172-8 [2017] [2.26].
17. Mohan, N., & Sivaprakasam, S. Heat Compensation Calorimeter as a Process Analytical Tool to Monitor and Control Bioprocess Systems. Industrial and Engineering Chemistry Research, 56(30), 8416–8427. https://doi.org/10.1021/acs.iecr.7b01367 [2017] [6.064].

2016

16. Mohan, N., Balakrishnan, R., & Sivaprakasam, S. Optimization and effect of dairy industrial waste as media components in the production of hyaluronic acid by Streptococcus thermophilus. Preparative Biochemistry and Biotechnology, 46(6), 628–638. https://doi.org/10.1080/10826068.2015.1128446 [2016] [2.162].

2015

15. Cingadi, S., Srikanth, K., E.V.R., A., & Sivaprakasam, S. Statistical optimization of cassava fibrous waste hydrolysis by response surface methodology and use of hydrolysate based media for the production of optically pure D-lactic acid. Biochemical Engineering Journal, 102, 82–90. https://doi.org/10.1016/j.bej.2015.02.006 [2015] [3.978].

2014

14. Prasad, S., Srikanth, K., Limaye, A. M., & Sivaprakasam, S. Homo-fermentative production of D-lactic acid by Lactobacillus sp. employing casein whey permeate as a raw feed-stock. Biotechnology Letters, 36(6), 1303–1307. https://doi.org/10.1007/s10529-014-1482-9 [2014] [2.461].

2012

13. Schuler, M. M., Sivaprakasam, S., Freeland, B., Hama, A., Hughes, K. M., & Maison, I. W. Investigation of the potential of biocalorimetry as a process analytical technology (PAT) tool for monitoring and control of Crabtree-negative yeast cultures. Applied Microbiology and Biotechnology, 93(2), 575–584. https://doi.org/10.1007/s00253-011-3507-9 [2012] [4.813].

2011

12. Sivaprakasam, Senthilkumar, Dhandapani, B., & Mahadevan, S. Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery saline wastewater treatment. Brazilian Journal of Microbiology, 42(4), 1506–1515. https://doi.org/10.1590/S1517-83822011000400046 [2011] [2.105].
11. Sivaprakasam, S., Schuler, M. M., Hama, A., Hughes, K. M., & Maison, I. W. Biocalorimetry as a process analytical technology process analyzer: Robust in situ monitoring and control of aerobic fed-batch cultures of Crabtree-negative yeast cells. Journal of Thermal Analysis and Calorimetry, 104(1), 75–85. https://doi.org/10.1007/s10973-010-1259-x [2011] [4.626].

2010

10. Mahadevan, S., Dhandapani, B., Sivaprakasam, S., & Mandal, A. B. Batch kinetic studies on growth of salt-tolerant Pseudomonas aeruginosa secreting protease in a biocalorimeter. Biotechnology and Bioprocess Engineering, 15(4), 670–675. https://doi.org/10.1007/s12257-009-3131-z [2010] [2.836].

2009

09. Sekar, S., Sivaprakasam, S., & Mahadevan, S. Investigations on ultraviolet light and nitrous acid-induced mutations of halotolerant bacterial strains for the treatment of tannery soak liquor. International Biodeterioration and Biodegradation, 63(2), 176–181. https://doi.org/10.1016/j.ibiod.2008.08.005 [2009] [4.320].

2008

08. Senthilkumar, S., Surianarayanan, M., & Swaminathan, G. Biocalorimetric and respirometric studies on biological treatment of tannery saline wastewater. Applied Microbiology and Biotechnology, 78(2), 249–255. https://doi.org/10.1007/s00253-007-1309-x [2008] [4.813].
07. Sivaprakasam, Senthilkumar, Mahadevan, S., & Sekar, S. Calorimetric on-line monitoring of proteolytic activity of P. aeruginosa cultivated in a bench-scale biocalorimeter. Biochemical Engineering Journal, 39(1), 149–156. https://doi.org/10.1016/j.bej.2007.08.024 [2008] [3.978].
06. Sivaprakasam, Senthilkumar, Mahadevan, S., & Rajakumar, S. Biocalorimetric studies of the metabolic activity of Pseudomonas aeruginosa aerobically grown in a glucose-limited complex growth medium. Bioscience, Biotechnology and Biochemistry, 72(4), 936–942. https://doi.org/10.1271/bbb.70476 [2008] [2.043].
05. Sivaprakasam, Senthilkumar, Mahadevan, S., Sekar, S., & Rajakumar, S. Biological treatment of tannery wastewater by using salt-tolerant bacterial strains. Microbial Cell Factories, 7(1), 1–7. https://doi.org/10.1186/1475-2859-7-15 [2008] [5.328].
04. Sivaprakasam, Senthilkumar, Mahadevan, S., & Gopalarman, S. Oxygen mass transfer studies on batch cultivation of P. aeruginosa in a biocalorimeter. Electronic Journal of Biotechnology, 11(1). https://doi.org/10.2225/vol11-issue1-fulltext-15 [2008] [2.800].

2007

03. Sudharsan, S., Sivaprakasam, S., & Ranjith, K. Physical and nutritional factors affecting the production of amylase from species of Bacillus isolated from spoiled food waste. African Journal of Biotechnology, 6(4), 430–435. https://doi.org/10.4314/ajb.v6i4.56233 [2007] [NA].
02. Sivaprakasam, Senthilkumar, Mahadevan, S., & Gopalarman, S. Isolation, identification and optimization of halotolerant bacteria for the degradation of tannery saline wastewater. Research Journal of Biotechnology, 2(3), 5–11. NA [2007] [0.798].
01. Sivaprakasam, Senthilkumar, Mahadevan, S., & Bhattacharya, M. Biocalorimetric and respirometric studies on metabolic activity of aerobically grown batch culture of Pseudomonas aeruginosa. Biotechnology and Bioprocess Engineering, 12(4), 340–347. https://doi.org/10.1007/BF02931054 [2007] [2.836].