
and Electrical Engineering
Introduction: speech production and perception, information sources in speech, linguistic aspect of speech, acoustic and articulatory phonetics, nature of speech, models for speech analysis and perception; Short-term processing: need, approach, time, frequency and time-frequency analysis; Short-term Fourier transform (STFT): overview of Fourier representation, non-stationary signals, development of STFT, transform and filter-bank views of STFT; Cesptrum analysis: Basis and development, delta, delta-delta and mel-cepstrum, homomorphic signal processing, real and complex cepstrum; Linear Prediction (LP) analysis: Basis and development, Levinson-Durbin’s method, normalized error, LP spectrum, LP cepstrum, LP residual; Sinusoidal analysis: Basis and development, phase unwrapping, sinusoidal analysis and synthesis of speech; Speech coding: Need and parameters, classification, waveform coders, speech-specific coders, GSM, CDMA and other mobile coders; Applications: Some applications like pitch extraction, spectral analysis and coding standard.
Texts/References
1. L.R. Rabiner and R.W. Schafer, Digital Processing of Speech Signals Pearson Education, Delhi, India, 2004
2. J. R. Deller, Jr., J. H. L. Hansen and J. G. Proakis Discrete-Time Processing of Speech Signals, Wiley-IEEE Press, NY, USA, 1999.
3. D. O’Shaughnessy, Speech Communications: Human and Machine, Second Edition,University Press, 2005.
4. T. F. Quatieri, “Discrete time processing of speech signals”, Pearson Education, 2005.
5. L. R. Rabiner, B. H. Jhuang and B. Yegnanarayana, “Fundamentals of speech recognition”, Pearson Education, 2009.