Welcome to Department of Mathematics
logo

Mail Us
mathoff[AT]iitg.ac.in

Call Us
+91-361-2582650

Finite Element Methods

Code: MA773 | L-T-P-C: 4-0-0-8

MA773 Finite Element Methods [4-0-0-8]

Prerequisites: MA745 Theory of distribution and Sovolov spaces

Basic concept of the finite element method, Integral formulations and variational methods, The Lax-Milgram theorem, The abstract Galerkin method, Piecewise polynomial approximation in Sobolev spaces, Finite elements, Numerical quadrature, Applications to autonomous and non-autonomous problems, Optical error bounds in energy norms, Variational crimes, Apriori error estimates.

The discontinuous Gaterkin methods, Adaptive finite element, The Autin-Nitscte duality argument, A posteriori error analysis.

Texts:

  1. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge Universityh Press, 1987.
  2. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
  3. J. N. Reddy, An Introduction to Finite Element Method, McGraw Hill, 1993.
  4. K. Erikssen et al., Computational Differential Equations, Cambridge University Press, 1996.
  5. C. A. J. Fletcher, Computational Galerkin Methods, Springer-Verlag, New-York inc, 1984.