Finite Element Methods for Partial Differential Equations
Code: MA671 | L-T-P-C: 3-0-0-6
Prerequisites: MA322/MA572 or equivalent
Basic concepts of finite element methods; Elements of function spaces, Lax-Milgram theorem, piecewise polynomial approximation in function spaces, Galerkin orthogonality and Ceas lemma, Bramble-Hilbert lemma, Aubin-Nitsche duality argument; Applications to elliptic, parabolic and hyperbolic equations, a priori error estimates, variational crimes; A posteriori error analysis reliability, efficiency and adaptivity.
Texts/References:
- C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Dover Publications, 2009.
- P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1978.
- J. N. Reddy, An Introduction to Finite Element Method, McGraw Hill, 1993.
- S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 2nd edition, Springer, 2002.
- Z. Chen, Finite Element Methods and Their Applications, Springer, 2005.
- D. L. Logan, A First Course in the Finite Element Method, 4th edition, Cenegage Learning India Pvt Ltd, 2007.
- A. J. Davies, The Finite Element Method: An Introduction with Partial Differential Equations, Oxford University Press, 2011.