MA642 Real Analysis - 1 [3-1-0-8] Prerequisite: Nil
Completeness properties of real numbers, countable and uncountable sets, cardinality. Norms and metrics: Metric spaces, convergence of sequences, completeness, connectedness and sequential compactness; Continuity and uniform continuity; sequences and series of functions, uniform convergence, equicontinuity, Ascoli's theorem, Weierstrass approximation theorem, power series. Calculus of functions of a real variable: Differentiability, Mean value theorems, Taylor's theorem. Calculus of functions of several real variables: Partial and directional derivatives, differentiability, Chain Rule, Taylor's theorem, Maxima and Minima, Lagrange multipliers, Inverse function theorem, Implicit function theorem. Multiple Integration: Fubini's Theorem, Line integrals, Surface integrals, Green, Gauss and Stokes theorems.
Texts/References: